Устройство вакуумной индукционной печи. Индукционные печи. Виды и работа. Применение и особенности. Индукционная печь из высокочастотного генератора

В последнее время за рубежом вновь возрос интерес к индукционным печам как к возможным агрегатам получения слитков, особенно с использованием в качестве шихты металлизованных окатышей.
Применение печей этого типа в сталеплавильных цехах ограничивается во всем мире целями получения сплавов или лигатур, в связи с чем емкость их, как правило, не превышает 5 т.
В литейных цехах, напротив, работают крупные печи. Самая крупная установка в мире включает в себя 4 печи емкостью по 60 т и мощностью по 20 кВт с общей производительностью 160 т/ч. Используемый лом подогревается до 600 °C.
По целому ряду важнейших параметров печи этого типа предпочтительнее дуговых электропечей. В связи с этим возникают вопросы относительно возможных граничных условий применения их в сталеплавильном производстве. Имеющаяся практика свидетельствует о том, что допустимое напряжение может составлять 3000 В и сила тока 70 000 А. Таким образом, кажущаяся мощность может быть в перспективе повышена до 210 MB*А. Индуцированная действительная мощность, зависящая от толщины стен тигля, относится к кажущейся мощности как 1:5-1:7.
Движение металла в индукционной печи, являющееся в целом весьма положительным с металлургических позиций фактором, при чрезмерной удельной мощности может быть, однако, сопряжено с выбросами металла. По этому показателю удельная мощность крупных печей ограничивается пока что величиной 330 кВт/т металла.
На мощность индукционных печей может существенно повлиять толщина футеровки тигля. Футеровка должна быть достаточно надежной и долговечной. Однако по мере увеличения ее толщины снижается полезная мощность печи, к примеру, для печи емкостью 100 т при кажущейся мощности 210 MB*A она снижается до 38 МВт при толщине стен 15 см и до 28 МВт при толщине стен 40 см. Выбор материала стен также на сегодня является большой проблемой. Кислая футеровка выдерживает большое число плавок, что позволяет иметь расход огнеупоров 0,7 кг/т стали при температуре выпуска стали 1550 °C. Однако такая футеровка годится далеко не для всех случаев и, как правило, не приемлема для выплавки стали из обычного лома из-за невозможности удалить из металла серу и фосфор в этом случае. К тому же углерод и марганец металла будут вступать во взаимодействие с кремнеземом футеровки, что может привести к последствиям, влияние которых необходимо ограничивать.
Удаление таких примесей, как кремний, сера, марганец, из металла можно в известной мере обеспечить вдуванием соответствующих порошкообразных материалов без чрезмерного износа футеровки. Можно также обеспечить и кипение металла с известным понижением мощности в этот период во избежание выбросов.
С позиций усвоения легирующих, расплавления легковесной шихты, удаления газов из металла и снижения его газонасыщенности индукционные печи обладают несомненными преимуществами перед дуговыми. Наряду с этим индукционные печи по принципу работы являются по существу агрегатами непрерывного действия и поэтому могут быть более пригодными для передела металлизованной шихты. Важно и то, что работа индукционных печей не сопровождается такими значительными колебаниями электрических параметров, как работа дуговых печей.
Капитальные и эксплуатационные затраты на производство стали в индукционных и дуговых печах близки между собой. Ho при организации непрерывного процесса плавки можно ожидать снижения затрат в случае использования индукционных печей вследствие упрощения конструкции зданий и газоочистки, устранения затрат на борьбу с шумом, меньших затрат на обслуживающий персонал и огнеупоры, более гибкого регулирования температуры и химического состава стали.
Использование индукционных печей для переплава металлизованных окатышей имеет ряд дополнительных преимуществ.
Вследствие интенсивного движения металла в индукционной печи металлизованные окатыши могут быстро увлекаться в глубь ванны, что предохранит их от окисления в процессе плавления. К тому же само плавление происходит без перегрева окатышей, что обеспечивает минимальный угар железа и выделение пыли из печи.
При заданной подводимой мощности к печи температура металла легко регулируется скоростью подачи окатышей.
Могут быть сокращены капитальные затраты, поскольку установка может иметь два тигля, один из которых находится в ремонте, другой в работе. В этом случае достигается высокая степень использования установленной мощности.
Малое время- соприкосновения окатышей с атмосферой, а также отсутствие зон высоких температур, как это имеет место под электрическими дугами в дуговой печи, позволят получать очень низкие содержания азота в металле - на уровне их содержаний в металле, выплавленном в кислородных конверторах.
Что касается металлургических процессов в индукционной печи при переплаве металлизованных окатышей, то они по существу сводятся к двум процессам: удалению фосфора и удалению углерода с одновременным довосстановлением содержащихся в окатышах окислов железа. Содержание серы в окатышах при газовом восстановлении может быть получено на низком уровне.
На ряде индукционных установок в ФРГ емкостью от нескольких десятков килограммов до двух тонн были проведены достаточно разносторонние эксперименты по переплаву металлизованных окатышей, которые позволили выявить многие особенности этого процесса, его преимущества и недостатки, а также в известной мере определить перспективы на будущее.
Скорость нагрева губчатого железа в индукционной тигельной печи джоулевым теплом зависит как от параметров самого губчатого железа, так и печи. При проведении сравнительных экспериментов в двух печах мощностью 54 и 30 кВт с частотой тока соответственно 250 и 2000 Гц при массе плавки от 4 до 22 кг, с использованием губчатого железа пяти сортов с колебаниями размеров кусков от 2-16 до 6-40 мм, насыпной плотности от 1,01 до 2,52 г/см3 и степени металлизации от 83,9 до 99,2 были установлены следующие основные закономерности. Величина индуктируемой в садке мощности и скорость нагрева губчатого железа возрастали с увеличением частоты тока и мощности печи, а также величины кусков губчатого железа, степени его металлизации и насыпной плотности. Однако при наличии выявленной технической возможности расплавления губчатого железа в индукционной печи в отсутствие какого-то количества предварительно расплавленного металла, так называемого "болота", была установлена нецелесообразность такого процесса. Губчатое железо начинало плавиться на дне тигля, а находившийся выше слой губчатого железа вниз не сходил и спекался настолько прочно, что дальнейшая загрузка губчатого железа оказывалась невозможной. Попытки расплавить этот слой могут привести к перегреву уже расплавленного металла и прогару тигля. Чтобы получить необходимую для плавления высокую индуктируемую мощность, необходимы высокочастотные установки, которые значительно более дороги и к тому же металл в них очень слабо перемешивается. Наконец, необходимый нагрев губчатого железа достигался при очень высоком расходе электроэнергии, т.е. при значительно более низком к.п.д. печи, чем при плавлении скрапа.
Дальнейшие опыты с высокочастотной печью (2000 Гц) емкостью 120 кг подтвердили неперспективность использования печей такого типа для плавления губчатого железа. Даже при загрузке губчатого железа на чистую поверхность предварительно расплавленного металла окатыши быстро расплавлялись только в начальный период их загрузки, не увлекаясь при этом в глубь ванны. В дальнейшем начинал образовываться шлак, поверхность которого вследствие излучения и охлаждающего эффекта губчатого железа покрывалась коркой, что препятствовало поступлению свежих порций губчатого железа в металлическую ванну.
Гораздо более обнадеживающими были эксперименты, проведенные в низкочастотной печи (150 Гц) емкостью 1,5 т, в ходе которых переплавлялось губчатое железо со степенью металлизации от 87,6 до 97,0 с крупностью кусков 6-40 мм. Каждую плавку начинали при наличии в печи около 1 т расплавленного металла и дополнительно загружали около 300 кг губчатого железа, после расплавления выпускали около 250 кг металла и скачивали шлак. При этом расход электроэнергии в случае выплавки стали с 0,5 % С составил в среднем 2617 МДж/т и в случае выплавки стали с 1,8 % 2318 МДж/т. На каждый 1 % снижения степени металлизации расход электроэнергии увеличивался на 36 МДж на 1 т выплавленного металла. Длительность плавления каждой порции губчатого железа составляла 16 мин, при этом температура ванны вследствие недостаточности подводимой мощности снижалась на 90 °C. Таким образом, производительность плавления определялась не скоростью плавления, а подводимой мощностью. Поскольку пустая порода губчатого железа имела кислый характер (2,5 % SiO2; 0,1 % CaO и 0,2 % Al2O3), то износ основной футеровки тигля был довольно значительным, увеличивался сверху вниз и достигал 15 % от начальной толщины, составляющей 13 см. Доля восстановленных окислов железа за время плавки составляла около 65 %. В тех случаях, когда шлак не раскислялся кремнием и марганцем, он был пористым и быстро охлаждался с поверхности, что вынуждало прекращать загрузку губчатого железа для скачивания шпака, если степень металлизации губчатого железа не превышала 90 %.
На специально построенной на заводе в Оберхаузене индукционной печи промышленной частоты емкостью 2 т и установленной мощностью 750 кВт было проведено изучение взаимодействия шлака и огнеупорной футеровки тигля, а также реакций на границах раздела фаз губчатое железо - расплав и расплав - шлак. Толщина кладки стен составляла в начале кампании 100 мм и допускалось ее снижение до 40 мм. Использовалось губчатое железо, полученное на установке Пурофер с различным содержанием углерода и пустой породы, а также степени восстановления (табл. 27).

При переплаве железа марки А с низким содержанием фосфора и кислой пустой породой можно было работать на кислых шлаках и кварцевой футеровке тигля. При этом насыщенный шлак содержал около 82 % SiO2; 10 % FeO и 8 % Al2O3. Износа нижней части тигля не наблюдали, но верхняя его часть изнашивалась довольно быстро, ко не за счет химического взаимодействия со шлаком, а в результате попадания на стенки окисленных капель металла и образования при этом легкоплавких силикатов. Устранено это явление может быть путем изготовления этой части тигля из глинозема.
При переплаве губчатого железа марки В основность шлака составляла около 1,5 и количество его не превышало 110 кг/т. Такой шлак разъедал футеровку из плавленого или обожженного магнезита, тигель из материала, содержащего 80 % MgO и 20 % Cr2O3, стоял в течение трех недель при трехсменной работе.
При изучении металлургических процессов при переплаве губчатого железа было отмечено два важных обстоятельства.
1. При выбранных электрических параметрах печи металл в ней интенсивно перемешивался и губчатое железо быстро увлекалось в глубь ванны. Благодаря этому, а также наличию кислорода и углерода в самом губчатом железе реакция обезуглероживания получала большое развитие и протекала с высокими скоростями, несмотря на неблагоприятное соотношение поверхности ванны к ее объему в индукционной печи по сравнению с дуговой печью. В экспериментах скорость обезуглероживания достигала 1 кг/ (м2*мин) и предположительно может быть повышена. Благодаря этому скорость расплавления губчатого железа в индукционной печи емкостью 100 т может достигать 50 т/ч.
2. Температура шлака в индукционной печи не может превышать температуру металла и поскольку к тому же фосфор в губчатом железе находится в пустой породе, то существенно облегчаются возможности получения низкого содержания фосфора в металле. Для стали, выплавленной из губчатого железа марки В, типичным был следующий химический состав, %: С 0,1; Mn 0,04; P 0,011; S 0,005 и N2 0,0015. Эти эксперименты показали, что в случае периодической загрузки губчатого железа при правильном Выборе геометрических и электрических параметров печи особых технических трудностей в процессе его переплава не возникает, однако стоимость плавления, отнесенная к выходу годного металла, выше, чем при плавлении скрапа, увеличивается расход электроэнергии и раскислителей, выше износ футеровки, большие потери времени на скачивание шлака. Поэтому переплав губчатого железа в индукционной Печи может быть экономически целесообразен, если стоимость его будет меньше стоимости скрапа или возможно будет найти источники компенсации этих потерь (большая однородность и чистота губчатого железа, удобство его загрузки и транспортировки и т.д.).
Особенно большие преимущества могут быть получены при обеспечении непрерывной загрузки и выпуска металла. В этом случае в принципе возможны резкое сокращение ручных операций, достижение высокой степени автоматизации процесса, работа при полном тигле на максимальной мощности при соответствии подводимой и потребляемой электрической мощности и обеспечении стационарного процесса плавления, температуры и химического состава металла.
По данным, при периодическом процессе, но с оставлением в тигле 30-60 % металла потребляемая электрическая мощность составляет 75-100 % от номинальной (рис. 101).
Проведенная на серии экспериментов в печи емкостью 130 кг проверка этих предположений в значительной степени их подтвердила, но выявила и ряд новых особенностей процесса, сопряженных с затруднениями.
В течение 970 мин было проплавлено 116 кг губчатого железа со степенью металлизации 96,9 % в кислом тигле с нагревом металла до температуры максимально 1600 °C при содержании в нем углерода от 1,2 до 3,5 %. Загрузка губчатого железа производилась непрерывно через трубу с внутренним диаметром в нижней части 80 мм, непрерывный выпуск металла обеспечивался наклонным положением тигля в ходе экспериментов. Износ тигля при температуре ванны ниже 1500 °C был незначительным, но при температуре выше 1560 °C уже через час наблюдался сильный износ, особенно в верхней части. Расход электроэнергии на 1 т губчатого железа сильно зависел от подводимой мощности и снижался вдвое при увеличении ее с 42 до 78 кВт (рис. 102). При этом производительность плавления повышалась с 10 до 28 т/м2, однако температура металла и содержание в нем углерода возрастали. Таким образом, работа с полным тиглем и максимальной подводимой мощностью может существенно повысить экономичность процесса. Окончательно не подтвердилось предположение о том, что губчатое железо из-за малой его теплопроводности будет расплавляться медленнее, чем скрап. Скорость плавления при стационарном состоянии процесса определялась только количеством подводимого тепла. Поддержание требуемого содержания углерода при достижении стационарности процесса не вызывает затруднений, несмотря на протекание реакций обезуглероживания, и непрерывном растворении в ванне губчатого железа с содержанием углерода, отличным от содержания его в ванне.

Проведенные эксперименты, хотя и не дали окончательного ответа относительно возможной экономической эффективности процесса переплава губчатого железа в промышленных условиях, но прояснили очень многие технологические и экономические аспекты проблемы. Достаточно отчетливо установлено, что количество шлака должно быть минимальным, а степень металлизации максимальной. В этом случае протекание процесса существенно облегчается, но следует отметить, что одновременно возрастает и стоимость губчатого железа. Работа на кислых шлаках, возможна при использовании только кислой футеровки и при содержании фосфора в губчатом железе не выше допустимого в стали. Ho температура нагрева металла в этом случае не должна превышать 1500 °C. Использование магнезитохромитовых тиглей позволяет нагревать металл до более высоких температур, но необходимость нейтрализации кремнезема шлака влечет за собой увеличение расхода раскислителей, электроэнергии, шлакообразующих и снижение выхода годного. Во всех случаях необходима принимать меры против подстуживания шлака, а возможно необходимо будет разрабатывать и способы его подогрева.
Весьма важным обстоятельством является обеспечение таких геометрических размеров тигля и электрических параметров установки, при которых средняя часть поверхности металла в тигле будет свободна от шлака, благодаря чему губчатое железо будет попадать непосредственно на металл и увлекаться в его толщу. В противном случае необходимо будет принятие специальных мер для прохождения губчатого железа через толщу шлака. Согласно предложению фирмы "Тиссен" это может быть обеспечено при отношении удельной мощности печи к корню квадратному из частоты, равному 49,5.
He исключено, что учет всех этих ограничений приведет к созданию какого-то процесса, в котором индукционная печь будет выступать только в качестве агрегата для непрерывного плавления металлизованной шихты, а остальные операции (подогрев, раскисление, легирование, доводка по химическому составу и т.д.) будут осуществляться в агрегатах внепечной металлургии. В качестве такого агрегата в первую очередь может представлять интерес агрегат типа печь - ковш, разработанный фирмами ASEA и SKF, в котором может быть осуществлен весь комплекс отмеченных выше операций.
Тем не менее губчатое железо, получаемое процессом Хоганес, уже в течение длительного времени используется в качестве шихты в количестве от 10 до 60 % при выплавке в кислых индукционных печах емкостью до 12 т инструментальных и конструкционных сталей, сталей тяжелых поковок и в некоторой степени нержавеющих сталей, а также в основных печах, главным образом при выплавке последних. При этом обрабатываемость, чистота и однородность стали существенно повышаются.
Губчатое железо используется в виде брикетов длиной 75 мм и диаметром около 88 мм с содержанием 0,17% С и около 1 % O2. Такое соотношение между кислородом и углеродом позволяет поддерживать ванну в состоянии умеренного кипения и обеспечивает получение, если необходимо, даже и очень низких содержаний углерода. Реакция между этими элементами начинается уже при 700 °C, однако взаимодействие их с хромом и другими, имеющими к ним сродство элементами большого развития не получает. Это открывает возможность сочетать использование губчатого железа с более углеродистым феррохромом, чем обычно применяемый при выплавке низкоуглеродистых сталей.
Во избежание излишних потерь хрома и повышения содержания углерода в расплаве рекомендуется следующий порядок загрузки индукционной печи.
Никель и молибден загружаются на дно печи, затем подаются брикеты губчатого железа, после расплавления этой части шихты производится скачивание шлака и только затем присадка скрапа и оставшихся легирующих добавок.
Извлечение хрома, расход электроэнергии и производительность печей находятся на том же уровне, что и при использовании обычной шихты.
В табл. 28 приведены результаты по извлечению легирующих элементов при выплавке в 12-т индукционной печи аустенитной нержавеющей стали с загрузкой 12,3 % губчатого железа, 24,0 % оборотного скрапа, 9,25 % никеля, 18,5 % феррохрома, 2,85 % ферромолибдена, 31,0 % стального скрапа (0,05 % С) и 2,1 % ферромарганца.
Фирмы "Тиссен" и "Броун Бовери" заключили соглашение о реализации совместного изобретения, касающегося конструкции мощных индукционных печей и процесса передела в них металлизованного сырья, получаемого по способу Пурофер. Изобретение предусматривает создание печей промышленной частоты емкостью свыше 100 т с удельной мощностью 350 кВт/т при частоте тока 50 Гц или 385 кВт/т при частоте тока 60 Гц. Металлическая шихта будет непрерывно подаваться на оголенную от шлака вспученную под влиянием электромагнитного движения центральную часть поверхности металла в тигле. При этом предполагается использовать опыт работы существующей печи емкостью 60 т, мощностью 21 МВт, используемой для плавки чугуна, и реализовать процесс на печи емкостью свыше 100 т и мощностью 45 МВт.

Принцип индукционного нагрева заключается в преобразовании энергии электромагнитного поля, поглощаемой электропроводным нагреваемым объектом, в тепловую энергию.

В установках индукционного нагрева электромагнитное поле создают индуктором, представляющим собой многовитковую цилиндрическую катушку (соленоид). Через индуктор пропускают переменный электрический ток, в результате чего вокруг индуктора возникает изменяющееся во времени переменное магнитное поле. Это — первое превращение энергии электромагнитного поля, описываемое первым уравнением Максвелла .

Нагреваемый объект помещают внутрь индуктора или рядом с ним. Изменяющийся (во времени) поток вектора магнитной индукции, созданной индуктором, пронизывает нагреваемый объект и индуктирует электрическое поле. Электрические линии этого поля расположены в плоскости, перпендикулярной направлению магнитного потока, и замкнуты, т. е. электрическое поле в нагреваемом объекте носит вихревой характер. Под действием электрического поля, согласно закону Ома, возникают токи проводимости (вихревые токи). Это — второе превращение энергии электромагнитного поля, описываемое вторым уравнением Максвелла .

В нагреваемом объекте энергия индуктированного переменного электрического поля необратимо переходит в тепловую. Такое тепловое рассеивание энергии, следствием чего является нагрев объекта, определяется существованием токов проводимости (вихревых токов). Это — третье превращение энергии электромагнитного поля, причем энергетическое соотношение этого превращения описывается законом Ленца-Джоуля .

Описанные превращения энергии электромагнитного поля дают возможность:
1) передать электрическую энергию индуктора в нагреваемый объект, не прибегая к контактам (в отличие от печей сопротивления)
2) выделить тепло непосредственно в нагреваемом объекте (так называемая «печь с внутренним источником нагрева» по терминологии проф. Н. В. Окорокова), в результате чего использование тепловой энергии оказывается наиболее совершенным и скорость нагрева значительно увеличивается (по сравнению с так называемыми «печами с внешним источником нагрева»).

На величину напряженности электрического поля в нагреваемом объекте оказывают влияние два фактора: величина магнитного потока, т. е. число магнитных силовых линий, пронизывающих объект (или сцепленных с нагреваемым объектом), и частота питающего тока, т. е. частота изменений (во времени) магнитного потока, сцепленного с нагреваемым объектом.

Это дает возможность выполнить два типа установок индукционного нагрева, которые различаются и по конструкции и по эксплуатационным свойствам: индукционные установки с сердечником и без сердечника.

По технологическому назначению установки индукционного нагрева подразделяют на плавильные печи для плавки металлов и нагревательные установки для термической обработки (закалки, отпуска), для сквозного нагрева заготовок перед пластической деформацией (ковкой, штамповкой), для сварки, пайки и наплавки, для химико-термической обработки изделий и т. д.

По частоте изменения тока, питающего установку индукционного нагрева, различают:
1) установки промышленной частоты (50 Гц), питающиеся от сети непосредственно или через понижающие трансформаторы;
2) установки повышенной частоты (500-10000 Гц), получающие питание от электромашинных или полупроводниковых преобразователей частоты;
3) высокочастотные установки (66 000-440 000 Гц и выше), питающиеся от ламповых электронных генераторов.

Установки индукционного нагрева с сердечником

В плавильной печи (рис. 1) цилиндрический многовитковый индуктор, изготовленный из медной профилированной трубки, насаживают на замкнутый сердечник, набранный из листовой электротехнической стали (толщина листов 0,5 мм). Вокруг индуктора размещают огнеупорную керамическую футеровку с узким кольцевым каналом (горизонтальным или вертикальным), где находится жидкий металл. Необходимым условием работы является замкнутое электропроводное кольцо. Поэтому невозможно расплавить отдельные куски твердого металла в такой печи. Для пуска печи приходится в канал заливать порцию жидкого металла из другой печи или оставлять часть жидкого металла от предыдущей плавки (остаточная емкость печи).

Рис.1. Схема устройства индукционной канальной печи: 1 - индикатор; 2 - металл; 3 - канал; 4 - магнитопровод; Ф - основной магнитный поток; Ф 1р и Ф 2р - магнитные потоки рассеяния; U 1 и I 1 - напряжение и ток в цепи индуктора; I 2 - ток проводимости в металле

В стальном магнитопроводе индукционной канальной печи замыкается большой рабочий магнитный поток и лишь небольшая часть полного магнитного потока, создаваемого индуктором, замыкается через воздух в виде потока рассеяния. Поэтому такие печи успешно работают на промышленной частоте (50 Гц).

В настоящее время существует большое число типов и конструкций таких печей, разработанных во ВНИИЭТО (однофазные и многофазные с одним и несколькими каналами, с вертикальным и горизонтальным закрытым каналом разной формы). Эти печи применяют для плавки цветных металлов и сплавов со сравнительно низкой температурой плавления, а также для получения высококачественного чугуна. При плавке чугуна печь используют либо в качестве копильника (миксера), либо в качестве плавильного агрегата. Конструкции и технические характеристики современных индукционных канальных печей приведены в специальной литературе.

Установки индукционного нагрева без сердечника

В плавильной печи (рис. 2) расплавляемый металл находится в керамическом тигле, помещенном внутрь цилиндрического многовиткового индуктора. изготовляют из медной профилированной трубки, через которую пропускают охлаждающую воду. Узнать подробнее о конструкции индуктора можно .

Отсутствие стального сердечника приводит к резкому увеличению магнитного потока рассеяния; число магнитных силовых линий, сцепляемых с металлом в тигле, будет крайне мало. Это обстоятельство требует соответствующего увеличения частоты изменения (во времени) электромагнитного поля. Поэтому для эффективной работы индукционных тигельных печей приходится питать их токами повышенной, а в отдельных случаях и высокой частоты от соответствующих преобразователей тока. Подобные печи имеют очень низкий естественный коэффициент мощности (cos φ=0,03-0,10). Поэтому необходимо применять конденсаторы для компенсации реактивной (индуктивной) мощности.

В настоящее время имеется несколько типов индукционных тигельных печей, разработанных во ВНИИЭТО в виде соответствующих размерных рядов (по емкости) высокой, повышенной и промышленной частоты, для плавки стали (тип ИСТ).


Рис. 2. Схема устройства индукционной тигельной печи: 1 - индуктор; 2 - металл; 3 - тигель (стрелками показана траектория циркуляции жидкого металла в результате электродинамических явлений)

Преимуществами тигельных печей являются следующие: выделяющееся непосредственно в металле тепло, высокая равномерность металла по химическому составу и температуре, отсутствие источников загрязнения металла (помимо футеровки тигля), удобство управления и регулирования процесса плавки, гигиеничность условий труда. Кроме этого, для индукционных тигельных печей характерны: более высокая производительность вследствие высоких удельных (на единицу емкости) мощностей нагрева; возможность плавить твердую шихту, не оставляя металл от предыдущей плавки (в отличие от канальных печей); малая масса футеровки по сравнению с массой металла, что уменьшает аккумуляцию тепловой энергии в футеровке тигля, снижает тепловую инерцию печи и делает плавильные печи этого типа исключительно удобными для периодической работы с перерывами между плавками, в частности для фасонно-литейных цехов машиностроительных заводов; компактность печи, что позволяет достаточно просто изолировать рабочее пространство от окружающей среды и осуществлять плавку в вакууме или в газовой среде заданного состава. Поэтому в металлургии широко применяют вакуумные индукционные тигельные печи (тип ИСВ).

Наряду с преимуществами у индукционных тигельных печей имеются следующие недостатки: наличие относительно холодных шлаков (температура шлака меньше температуры металла), затрудняющих проведение рафинировочных процессов при выплавке качественных сталей; сложное и дорогое электрооборудование; низкая стойкость футеровки при резких колебаниях температуры вследствие небольшой тепловой инерции футеровки тигля и размывающего действия жидкого металла при электродинамических явлениях. Поэтому такие печи применяют для переплава легированных отходов с целью снижения угара элементов.

Использованная литература:
1. Егоров А.В., Моржин А.Ф. Электрические печи (для производства сталей). М.: «Металлургия», 1975, 352 с.

Индукционные печи были изобретены аж в 1887 году. И уже через три года появилась первая промышленная разработка, с помощью которой плавили различные металлы. Хотелось бы отметить, что в те далекие годы эти печи были в диковинку. Все дело в том, что ученые того времени не совсем понимали, какие процессы происходят в ней. Сегодня в этом разобрались. Нас же в этой статье будет интересовать тема – индукционная печь своими руками. Насколько проста ее конструкция, можно ли в домашних условиях собрать этот агрегат?

Принцип работы

Начинать сборку надо, разобравшись в принципе работы и устройстве прибора. С этого и начнем. Обратите внимание на рисунок выше, по нему и будем разбираться.

В состав прибора входят:

  • Генератор G, который создает переменный ток.
  • Конденсатор С вместе с катушкой L создает колебательный контур, который и обеспечивает установку высокой температурой.

    Внимание! В некоторых конструкциях используется так называемый автоколебательный генератор. Это дает возможность убрать из схемы конденсатор.

  • Катушка в окружающем пространстве образует магнитное поле, в котором присутствует напряжение, обозначенное на нашем рисунке буквой «Н». Само магнитное поле существует в свободном пространстве, а может замыкаться через ферромагнитный сердечник.
  • Оно же действует и на шихту (W), в которой создает магнитный поток (Ф). Кстати, вместо шихты может быть установлена какая-нибудь заготовка.
  • Магнитный поток индуцирует вторичное напряжение, равное 12 В. Но это происходит лишь в том случае, если W является электропроводящим элементом.
  • Если нагреваемая заготовка большая и цельная, то внутри нее начинает действовать так называемый ток Фуко. Он вихревого типа.
  • При этом вихревые токи передают от генератора через магнитное поле тепловую энергию, тем самым нагревая заготовку.

Электромагнитное поле достаточно широкое. И даже многоступенчатость преобразования энергии, которое присутствует в самодельных индукционных печах, обладает максимальным КПД – до 100%.

Тигельная печь

Разновидности

Существуют две основные конструкции индукционных печей:

  • Канальные.
  • Тигельные.

Не будем здесь расписывать все их отличительные особенности. Просто отметим, что канальный вариант – это конструкция, которая похожа на сварочный аппарат. К тому же, чтобы плавить металл в таких печах, приходилось оставлять немного расплава, без которого процесса просто не получалось. Второй вариант – это усовершенствованная схема, где используется технология без остаточного расплава. То есть, тигель просто устанавливается прямо в индуктор.

Как это работает

Зачем дома нужна такая печь?

Вообще, вопрос достаточно интересен. Давайте рассмотрим вот такую ситуацию. Существует достаточно большое количество советских электрических и электронных приборов, в которых использовались золотые или серебряные контакты. Изъять эти металлы можно разными способами. Один из них – индукционная печка.

То есть, берете контакты, складываете их в узкий и длинный тигель, который устанавливаете в индуктор. Через минут так 15-20, снизив мощность, остудив аппарат и разбив тигелек, вы получите стержень, на конце которого вы обнаружите золотой или серебряный кончик. Срезаете и сдаете в ломбард.

Хотя необходимо отметить, что с помощью этого самодельного агрегата можно проводить различные процессы с металлами. К примеру, можно провести закалку или отпуск.

Катушка с батарейкой (генератором)

Компоненты печки

В разделе «Принцип работы» мы уже упоминали о всех частях индукционной печи. И если с генератором все понятно, то с индуктором (катушкой) надо бы разобраться. Для нее подойдет медная трубочка. Если вы собираете аппарат мощностью 3 кВт, то вам потребуется трубка диаметром 10 мм. Сама же катушка скручивается диаметром 80-150 мм, при количестве витков от 8 до 10.

Обратите внимание, что витки медной трубки не должны соприкасаться друг с другом. Оптимальное расстояние между ними 5-7 мм. Сама катушка не должна касаться экрана. Расстояние между ними – 50 мм.

Обычно промышленные индукционные печи имеют узел охлаждения. В домашних условиях сделать такое невозможно. Но для агрегата мощностью 3 кВт работа до получаса ничем не грозит. Правда, со временем на трубке будет образовываться медная окалина, которая снижает КПД прибора. Так что периодически катушку придется менять.

Генератор

В принципе, сделать генератор своими руками – не проблема. Но это возможно лишь в том случае, если вы обладаете достаточными знаниями в радиоэлектронике на уровне среднего радиолюбителя. Если таковых знаний нет, тогда забудьте об индукционной печке. Самое главное, что и эксплуатировать этот прибор тоже надо умеючи.

Если вы встали перед дилеммой выбора схемы генератора, тогда примите один совет – у него должен отсутствовать жесткий спектр тока. Для того чтобы было понятнее, о чем идет речь, предлагаем самую простую схему генератора для индукционной печи на фотографии снизу.

Схема генератора

Необходимые знания

Электромагнитное поле действует на все живое. В качестве примера можно привести мясо в микроволновке. Поэтому стоит позаботиться о безопасности. И, неважно, вы собираете печь и тестируете ее или работаете на ней. Есть такой показатель, как плотность потока энергии. Так вот он зависит от именно от электромагнитного поля. И чем выше частота излучения, тем хуже человеческому организму.

Во многих странах приняты меры безопасности, в которых учитывается плотность потока энергии. Есть разработанные допустимые пределы. Это 1-30 мВт на 1 м² тела человека. Эти показатели действуют, если облучение происходит не больше одного часа в сутки. Кстати, установленный оцинкованный экран снижает плотность потолка в 50 раз.

Не забудьте оценить статью.

На сегодняшний день современное производство металлических изделий требует повышенного качества изготавливаемых материалов без существенного повышения цены продукта. Мы предлагаем Вам купить промышленные индукционные тигельные плавильные печи для плавки металла по ценам от производителя, при помощи которых можно достичь таких требований.

В отличии от пламенных и дуговых индукционные плавильные установки сохраняют точность и однородность химического состава и имеют меньшую стоимость.

Компания Проминдуктор занимается производством и продажей промышленных индукционных тигельных плавильных печей, которые подходят для плавки любых видов металла: чугуна, стали, алюминия, меди, золота, платины и их сплавов.

При покупке у нас Вы получаете ряд преимуществ:

  • Высокое качество - используем последние мировые разработки совместно с собственными;
  • Цены от производителя - стоимость значительно ниже, чем у других компаний в России;
  • Экономичность оборудования – экономия электричества до 30%;
  • Техническая поддержка 24/7 – если Вы приобрели оборудование у нас, то сможете получить помощь наших специалистов в любое время дня и ночи.
  • Наше производство и лучшие инженеры находятся в Китае, оборудование всегда есть в наличии на складе, бесплатная доставка по России, возможна доставка в страны СНГ. Позвоните нам и мы дадим профессиональные консультации в подборе.

    Принцип работы индукционных печей для плавки металла

    По принципу работы все индукционные плавильные установки напоминают трансформатор, в котором есть первичная и вторичная обмотка. Индуктор из медной трубы выполняет роль первичной обмотки, который имеет свое собственное водяное охлаждение. Роль вторичной обмотки выполняет металл (сталь, чугун, медь, алюминий) во время нагрева, заложенный в тигель. Под действием токов высокой частоты катушка образует электромагнитное поле в тигле, под воздействием которого происходит нагрев металла до максимальных температур за короткий период времени.

    Промышленные индукционные тигельные печи нашего производства имеют возможность задать необходимую мощность нагрева для плавки металла в зависимости от его типа. Эта функция является неоспоримым преимуществом данного оборудования.

    Устройство индукционной плавильной печи

    Условно индукционные тигельные печи можно разделить на 2 составляющие:

  • Плавильная установка
  • Вспомогательное оборудование

  • Плавильная установка представляет собой опорный каркас из двух сваренных стоек с гидравлическими плунжерами и узловую составляющую индуктора. Установочный механизм выполнен из прокатных листов нержавейки. Катушка индуктора изготовлена из медной трубы, через которую также происходит охлаждение посредством холодной воды. Электричество и вода подключены к катушке при помощи гибких кабелей, которые соединены последовательно. При помощи гидравлических плунжеров обеспечивается наклон установки до 95°.

    Все оборудование индукционной печи для плавки металла питается от частотного преобразователя тиристорного типа, который преобразовывает трехфазный ток в однофазный. Фронтовая панель имеет датчики защиты и оборудование, контролирующее работу преобразователя.

    Регулировка частоты происходит в автоматическом режиме по заданной программе. На воронке слива установлены системы оповещения и контроля охлаждения процессов, а также уровня конденсации рабочей зоны.

    Промышленные индукционные тигельные плавильные печи для плавки металла от компании ПРОМИНДУКТОР изготовлены по всем мировым стандартам и с использованием самых последних технологий.

    Индукционная печь используется для плавки цветных и черных металлов. Агрегаты такого принципа действия применяют в следующих сферах: от тончайшего ювелирного дела до промышленной плавки металлов в крупных размерах. В данной статье будут рассмотрены особенности различных индукционных печей.

    Индукционные печи для плавки металла

    Принцип работы

    Индукционный нагрев положен в основу действия печи. Другими словами, электрический ток образовывает электромагнитное поле и получается тепло, которое используется в промышленных масштабах. Этот закон физики изучается в последних классах общеобразовательной школы. Но понятие электрического агрегата и электромагнитных индукционных котлов нельзя путать. Хоть в основе работы и там и тут лежит электричество.

    Как это происходит

    Генератор подключается к источнику переменного тока, который поступает в него через индуктор, находящийся внутри. Конденсатор задействуется для создания контура колебания, в основе которого лежит постоянная рабочая частота, на которую настраивается система. При возрастании напряжения в генераторе до предела в 200 В индуктор создает магнитное поле переменного действия.

    Замыкание цепи происходит, чаще всего, посредством сердечника из ферромагнитного сплава. Переменное магнитное поле начинает взаимодействие с материалом заготовки и создает мощный поток электронов. После вступления в индукционное действие электропроводящего элемента в системе происходит возникновение остаточного напряжения , которое в конденсаторе способствует возникновению вихревого тока. Энергия вихревого тока преобразовывается в тепловую энергию индуктора и происходит нагревание до высоких температур плавления искомого металла.

    Тепло, производимое индуктором, применяют:

    • для расплавления мягких и твердых металлов;
    • для закаливания поверхности металлических деталей (например, инструмента);
    • для обработки в термическом режиме уже произведенных деталей;
    • бытовых потребностей (обогрев и кулинария).

    Краткая характеристика различных печей

    Разновидности приборов

    Индукционные тигельные печи

    Является наиболее распространенным типом печного индукционного нагрева. Отличительной чертой, отличной от других видов является то, что в ней переменное магнитное поле появляется при отсутствии стандартного сердечника. Тигель в форме цилиндра размещается внутри индукторной полости . Печь, или тигель изготавливается из материала, который прекрасно сопротивляется огню и подключается к переменному электрическому току.

    Положительные аспекты

    Тигельные агрегаты относят к экологически чистым источникам тепла , окружающая среда не загрязняется от плавки металлов.

    В работе тигельных печей присутствуют недостатки:

    • при технологической обработке используются шлаки пониженной температуры;
    • произведенная футеровка тигельных печей имеет низкую стойкость против разрушения, больше всего это заметно при резких скачках температур.

    Имеющиеся недостатки не представляют особенных трудностей, достоинства тигельного индукционного агрегата для плавки металла очевидны и сделали такой тип приборов популярным и востребованным среди широкого круга потребителей.

    Канальные печи индукционной плавки

    Такой тип нашел широкое применение в плавильном деле цветных металлов. Эффективно используется для меди и медных сплавов на основе латуни, мельхиора, бронзы. Активно плавят в канальных агрегатах алюминий, цинк и сплавы в составе этих металлов. Широкое использование печей этого типа ограничено из-за невозможности выполнить футеровку, стойкую к разрушениям, на внутренних стенках камеры.

    Расплавленный металл в канальных печах индукционного типа совершает тепловое и электродинамическое движение , что обеспечивает постоянную однородность смешивания компонентов сплава в печной ванне. Использование канальных печей индукционного принципа оправдано в случаях, если к расплавленному металлу и изготовленным слиткам предъявляются особые требования. Сплавы получаются качественными в плане коэффициента насыщения газами, присутствия в металле органических и синтетических примесей.

    Индукционные канальные печи работают по типу миксера и предназначаются для выравнивания состава, поддержки постоянной температуры процесса, и выбора скорости разлива в кристаллизаторы или формы. Для каждого сплава и состава литья существуют параметры специальной шихты.

    Достоинства

    • подогревание сплава происходит в нижней части, к которой нет воздушного доступа, что уменьшает испарение с верхней поверхности, нагретой до минимальной температуры;
    • канальные печи относят к экономичным индукционным печам, так как происходящее расплавление обеспечивается маленьким расходом электрической энергии;
    • печь имеет высокий коэффициент полезного действия благодаря применению в работе замкнутого контура магнитного провода;
    • постоянная циркуляция в печи расплавленного металла вызывает ускорение плавильного процесса и способствует однородности перемешивания компонентов сплава.

    Недостатки

    • стойкость каменной внутренней футеровки снижается при использовании высоких температур;
    • футеровка разрушается при плавлении химически агрессивных сплавов из бронзы, олова и свинца.
    • при плавлении загрязненной низкосортной шихты происходит засорение каналов;
    • поверхностный шлак на ванне не нагревается до высокой температуры, что не позволяет проводить операции в промежутке между металлом и укрытием и расплавлять стружку и скрап;
    • канальные агрегаты плохо переносят перерывы в работе, что заставляет постоянно хранить в жерле печи значительное количество жидкого сплава.

    Полное удаление расплавленного металла из печи ведет к ее быстрому растрескиванию. По этой же причине невозможно выполнить быструю перестройку с одного сплава на другой , приходится делать несколько промежуточных плавок, получивших название балластных.

    Вакуумные печи индукционного действия

    Этот вид имеет широкое применение для плавления сталей высокого качества и никелевых, кобальтовых и железных сплавов жаростойкого качества. Агрегат успешно справляется с плавкой цветных металлов. В вакуумных агрегатах варят стекло, обрабатывают высокой температурой детали, производят монокристаллы .

    Печь относят к высокочастотному генератору, расположенному в изолированном от внешней среды индукторе, пропускающем ток высокой частоты. Для создания вакуума из него насосами откачивают воздушные массы. Все операции по введению добавок, загрузке шихты, выдаче металла производится автоматическими механизмами с электрическим или гидравлическим управлением. Из вакуумных печей получают сплавы с небольшими примесями кислорода, водорода, азота, органики. Результат намного превосходит открытые печи индукционного действия.

    Жаропрочную сталь из вакуумных печей применяют в инструментальном и оружейном производстве . Некоторые сплавы из никеля, с содержанием никеля и титана являются химически активными, и получить их в других видах печей проблематично. Вакуумные печи выполняют розлив металла поворотом тигеля во внутреннем пространстве кожуха или вращением камеры с неподвижно закрепленной печью. Некоторые модели имеют в дне открывающееся отверстие для слива металла в установленную емкость.

    Тигельные печи с транзисторным преобразователем

    Применяют для ограниченного веса цветных металлов. Они мобильные, имеют небольшой вес и с легкостью переставляются с места на место. В комплектацию печи входит высоковольтный транзисторный преобразователь универсального действия . Позволяет подобрать мощность, рекомендуемую для подключения в сети, а соответственно ей тип преобразователя, который необходим в этом случае с изменением параметров веса сплава.

    Транзисторная индукционная печь широко применяется для металлургической обработки. С ее помощью нагревают детали в кузнечном деле, закаляют металлические предметы. Тигли в транзисторных печах выполняют из керамики или графита, первые предназначены плавить ферромагнитные металлы, такие как чугун или сталь. Графит устанавливается для плавления латуни, меди, серебра, бронзы и золота. На них плавят стекло и кремний. Алюминий хорошо плавится посредством чугунных или стальных тиглей.

    Что такое футеровка печей индукционного действия

    Ее предназначение состоит в защите печного кожуха от разрушающего действия высоких температур. Побочным действием является сохранение тепла, следовательно, повышается результативность процесса .

    Тигель в конструкции индукционной печи выполняется одним из способов:

    • способом выемки в маленьких по объему печах;
    • набивным способом из огнеупорного материала в виде кладки;
    • комбинированным, сочетающим керамику и прокладку буферного слоя в промежутке кладки и индикатора.

    Футеровка выполняется из кварцита, корунда, графита, шамотного графита, магнезита. Во все эти материалы домешивают добавки, улучшающих характеристики футеровки, уменьшающих изменения объема, улучшающих спекание, увеличивающие стойкость слоя к агрессивным материалам.

    Для выбора того или иного материала для футеровки учитывают ряд сопутствующих условий , а именно, вид металла, цену и огнеупорные свойства тигля, срок службы состава. Правильно подобранный состав футеровки должен обеспечить технические требования для проведения процесса:

    • получение слитков высокого качества;
    • наибольшее количество полноценной плавки без проведения ремонтных работ;
    • безопасную работу специалистов;
    • стабильность и непрерывность проведения плавильного процесса;
    • получение качественного материала при использовании экономного количества ресурсов;
    • применение для футеровки распространенных материалов по невысокой цене;
    • минимальное влияние на окружающее пространство.

    Применение индукционных печей позволяет получить сплавы и металлы отменного качества с минимальным содержанием различных примесей и кислорода, что повышает их применение в сложных областях производства.