Синхронный генератор с ротором на постоянных магнитах. Экспериментальные исследования энергетической эффективности сверхединичных синхронных генераторов на постоянных магнитах. Полеориентированное управление сдпм по датчику положения

Полезная модель относится к электротехнике, а именно к электрическим машинам, и касается усовершенствования конструкции синхронных генераторов торцевого типа, которые могут быть использованы преимущественно для получения электрической энергии в ветроэнергетических установках. Конструкция генератора содержит корпус, в котором размещены чередующиеся элементы электромагнитной системы (ротор-статор-ротор), выполненные в виде дисков, установленных на неподвижном валу, где диск статора жестко связан с последним, на дисках роторов закреплены постоянные магниты, а на диске статора - катушки, образующие его кольцевую обмотку с выводом ее концов через осевое отверстие в валу, где корпус состоит из двух щитов - переднего и заднего, установленных на валу в подшипниках, передний щит имеет крышку-вал, диски роторов закреплены на указанных выше щитах, диск статора закреплен на валу многолопастными звеньями с обеих сторон, где каждая лопасть размещена в технологическом зазоре между электрическими катушками. Достоинствами настоящего генератора являются: меньшие, по сравнению с известными машинами аналогичного типа той же мощности, массогабаритные показатели; надежность в эксплуатации; простота в изготовлении; высокий КПД; технологичность сборки-разборки генератора и его ремонтопригодность; возможность выполнять любых габаритов за счет крепления сердечника статора на неподвижном валу многолопастными звеньями с обеих сторон.

Полезная модель относится к электротехнике, а именно к электрическим машинам, и касается усовершенствования конструкции синхронных генераторов торцевого типа, которые могут быть использованы преимущественно для получения электрической энергии в ветроэнергетических установках.

Известен синхронный электрогенератор с возбуждением от постоянных магнитов , выполненный по торцевому типу, содержащий статор, состоящий из двух частей с кольцевыми магнитопроводами, расположенными соосно и параллельно друг другу, между которыми помещен ротор.

В используемой конструкции ротор выполнен в виде диска, на который с обеих его сторон закреплены постоянные магниты, вследствие чего возможно их перемагничивание с одной стороны на другую, что приводит к снижению характеристик постоянных магнитов, а, следовательно, уменьшению эффективности работы генератора.

Наиболее близким к заявляемому объекту является торцевой синхронный электрогенератор с возбуждением от постоянных магнитов , содержащий два ротора с постоянными магнитами и статор между ними с катушками, уложенными в радиальные пазы, находящимися на торцевой поверхности статора.

Размещение катушек в пазах приводит к уменьшению рабочего зазора, что может привести к залипанию сердечника статора с постоянными магнитами, вследствие чего генератор становится

неработоспособным. Применение пазов приводит к появлению нежелательных гармонических составляющих токов, индукции в зазоре, а, следовательно, к увеличению потерь и, соответственно, к уменьшению КПД генератора. Дисковые роторы связаны между собой силовыми шпильками, что уменьшает жесткость и надежность конструкции.

Технический результат заявляемого решения, в качестве полезной модели, заключается в устранении возможного залипания сердечника статора с постоянными магнитами, что обеспечит гарантированную работу генератора, и уменьшении потерь, а, следовательно, увеличении КПД за счет применения кольцевой обмотки статора. Данная модель имеет более жесткую конструкцию за счет соединения роторов между собой посредством крепления их к корпусу генератора, что повышает его надежность. Сердечник статора закреплен на неподвижном валу многолопастными звеньями с обеих сторон, что приводит к уменьшению массогабаритных показателей торцевого синхронного электрогенератора с возбуждением от постоянных магнитов и позволяет выполнить генератор с достаточно большими внутренним и внешним диаметрами. Предлагаемая модель позволяет обеспечить технологичность сборки-разборки генератора и его ремонтопригодность.

Полезная модель предполагает наличие корпуса, в котором располагаются чередующиеся элементы электромагнитной системы (ротор-статор-ротор), которые выполнены в виде дисков и установлены на неподвижном валу. При этом статор жестко связан с последним. На дисках роторов закреплены постоянные магниты, а на диске статора - катушки, образующие его кольцевую обмотку с выводом ее концов через осевое отверстие в валу. Корпус состоит из двух щитов - переднего и заднего, установленных на валу в

подшипниках. Передний щит имеет вал-крышку. Диски роторов закреплены на указанных выше щитах, а диск статора закреплен на валу многолопастными звеньями с обеих сторон, где каждая лопасть размещена в технологическом зазоре между электрическими катушками.

На фиг.1 изображен генератор в продольном разрезе; на фиг.2 - статор (вид спереди).

Генератор состоит из статора 1 и двух роторов 2. Сердечник статора выполнен в виде диска, получаемого путем навивки ленты из электротехнической стали на оправку, наружный диаметр которой равен внутреннему диаметру статора. Сердечник закреплен между многолопастными звеньями 3 с обеих сторон. Каждая лопасть размещена в технологическом зазоре между катушками 4 кольцевой обмотки. Многолопастные звенья закреплены между собой болтами. Их основания выполнены в виде втулок, которые насажены на неподвижный вал 5. Во избежание возможного проворачивания статора звенья зафиксированы шпонкой 6. Для устранения осевого перемещения статора одно многолопастное звено прижато к буртику вала, а другое зажато стальной втулкой 7, прикручиваемой к валу по окружности тремя болтами. Вал имеет осевое отверстие, через которое концы обмотки выведены на клеммную коробку.

Сердечники роторов выполнены из конструкционной стали, как и сердечник статора, в виде дисков, ширина которых равна длине постоянного магнита 8. Постоянные магниты представляют собой кольцевые секторы и приклеены к сердечнику. Ширина магнитов равна ширине катушек статора и приближена к величине полюсного деления. Их размеры ограничены только шириной лопасти, помещаемой между катушками обмотки статора. Сердечники присоединены

винтами с потайными головками к внутренней стороне подшипниковых щитов 9 и 10. Применение винтов с потайными головками уменьшает уровень шума при работе генератора. Щиты выполнены из алюминиевого сплава. Соединены между собой также при помощи винтов с потайными головками - один из щитов имеет специальные углубления, в которые впрессованы стальные гайки (для упрочнения соединения, так как алюминий - мягкий материал), в которые уже и вкручены винты. В щиты установлены подшипники 11 с постоянно заполненной смазкой и двумя защитными шайбами. Подшипниковый щит 9 имеет вал-крышку 12, выполненную из стали. Она выполняет в данном генераторе две функции: а) закрывает подшипник; б) принимает вращение привода. Вал-крышка прикреплена к подшипниковому щиту 9 болтами с внутренней его стороны.

Работа данного генератора осуществляется следующим образом: привод передает крутящий момент через вал-крышку 12 всему корпусу, вследствие чего роторы приходят во вращение. Принцип же действия этого генератора аналогичен принципу действия известных синхронных генераторов: при вращении роторов 2 магнитное поле постоянных магнитов пересекает витки обмотки статора, изменяясь как по абсолютному значению, так и по направлению, и наводит в них переменную электродвижущую силу. Катушки обмотки соединяются последовательно таким образом, что их электродвижущие силы складываются. Генерируемое напряжение снимается с выводных концов обмотки, которые выходят на клеммную коробку через осевое отверстие в валу 5.

Данная конструкция генератора позволяет устранить возможное залипание сердечника статора с постоянными магнитами, а, следовательно, обеспечить гарантированную работу генератора; дает

возможность уменьшить пульсационные и поверхностные потери в стали за счет применения беспазового сердечника и кольцевой обмотки статора, вследствие чего увеличивается КПД. Также позволяет повысить надежность генератора из-за применения более жесткой конструкции (соединение роторов между собой посредством крепления их к корпусу генератора), уменьшить при той же мощности массогабаритные показатели и выполнять генератор любого габарита за счет крепления сердечника статора на неподвижном валу многолопастными звеньями с обеих сторон. Предлагаемая модель позволяет обеспечить технологичность сборки-разборки генератора и его ремонтопригодность.

Торцевой синхронный электрогенератор с возбуждением от постоянных магнитов, содержащий корпус, в котором размещены чередующиеся элементы электромагнитной системы (ротор - статор - ротор), выполненные в виде дисков, установленных на неподвижном валу, где диск статора жестко связан с последним, на дисках роторов закреплены постоянные магниты, а на диске статора - катушки, образующие его кольцевую обмотку с выводом ее концов через осевое отверстие в валу, отличающийся тем, что корпус состоит из двух щитов - переднего и заднего, установленных на валу в подшипниках, передний щит имеет вал-крышку, диски роторов закреплены на указанных выше щитах, диск статора закреплен на валу многолопастными звеньями с обеих сторон, где каждая лопасть размещена в технологическом зазоре между электрическими катушками.

Генератор - устройство, преобразующее один вид энергии в другой.
В данном случае рассматриваем преобразование механической энергии вращения в электрическую.

Различают два типа таких генераторов. Синхронные и асинхронные.

Синхронный генератор. Принцип действия

Отличительным признаком синхронного генератора является жёсткая связь между частотой f переменной ЭДС, наведённой в обмотке статора, и частотой вращения ротора n , называемой синхронной частотой вращения:

n = f / p

где p – число пар полюсов обмотки статора и ротора.
Обычно частота вращения выражается в об/мин, а частота ЭДС в Герцах (1/сек), тогда для количества оборотов в минуту формула примет вид:

n = 60· f / p

На рис. 1.1 представлена функциональная схема синхронного генератора. На статоре 1 расположена трёхфазная обмотка, принципиально не отличающаяся от аналогичной обмотки асинхронной машины. На роторе расположен электромагнит с обмоткой возбуждения 2, получающей питание постоянным током, как правило, через скользящие контакты, осуществляемые посредством двух контактных колец, расположенных на роторе, и двух неподвижных щёток.
В некоторых случаях в конструкции ротора синхронного генератора вместо электромагнитов могут использоваться постоянные магниты, тогда необходимость в наличии контактов на валу отпадает, но существенно ограничиваются возможности стабилизации выходных напряжений.

Приводным двигателем (ПД), в качестве которого используется турбина, двигатель внутреннего сгорания либо другой источник механической энергии, ротор генератора приводится во вращение с синхронной скоростью. При этом магнитное поле электромагнита ротора также вращается с синхронной скоростью и индуцирует в трёхфазной обмотке статора переменные ЭДС E A , E B и E C , которые будучи одинаковыми по значению и сдвинутыми по фазе относительно друг друга на 1/3 периода (120°), образуют симметричную трёхфазную систему ЭДС.

C подключением нагрузки к зажимам обмотки статора С1, С2 и С3 в фазах обмотки статора появляются токи I A , I B , I C , которые создают вращающееся магнитное поле. Частота вращения этого поля равна частоте вращения ротора генератора. Таким образом, в синхронном генераторе магнитное поле статора и ротор вращаются синхронно. Мгновенное значение ЭДС обмотки статора в рассматриваемом синхронном генераторе

e = 2Blwv = 2πBlwDn

Здесь: B – магнитная индукция в воздушном зазоре между сердечником статора и полюсами ротора, Тл;
l – активная длина одной пазовой стороны обмотки статора, т.е. длина сердечника статора, м;
w – количество витков;
v = πDn – линейная скорость движения полюсов ротора относительно статора, м/с;
D – внутренний диаметр сердечника статора, м.

Формула ЭДС показывает, что при неизменной частоте вращения ротора n форма графика переменной ЭДС обмотки якоря (ста- тора) определяется исключительно законом распределения магнитной индукции B в зазоре между статором и полюсами ротора. Если график магнитной индукции в зазоре представляет собой синусоиду B = B max sinα , то ЭДС генератора также будет синусоидальной. В синхронных машинах всегда стремятся получить распределение индукции в зазоре как можно ближе к синусоидальному.

Так, если воздушный зазор δ постоянен (рис. 1.2), то магнитная индукция B в воздушном зазоре распределяется по трапецеидальному закону (график 1). Если же края полюсов ротора «скосить» так, чтобы зазор на краях полюсных наконечников был равен δ max (как это показано на рис. 1.2), то график распределения магнитной индукции в зазоре приблизится к синусоиде (график 2), а, следовательно, и график ЭДС, индуцированной в обмотке генератора, приблизится к синусоиде. Частота ЭДС синхронного генератора f (Гц) пропорциональна синхронной частоте вращения ротора n (об/с)

где p – число пар полюсов.
В рассматриваемом генераторе (см. рис.1.1) два полюса, т.е. p = 1.
Для получения ЭДС промышленной частоты (50 Гц) в таком генераторе ротор необходимо вращать с частотой n = 50 об/с (n = 3000 об/мин).

Способы возбуждения синхронных генераторов

Самым распространенным способом создания основного магнитного потока синхронных генераторов является электромагнитное возбуждение, состоящее в том, что на полюсах ротора располагают обмотку возбуждения, при прохождении по которой постоянного тока, возникает МДС, создающая в генераторе магнитное поле. До последнего времени для питания обмотки возбуждения применялись преимущественно специальные генераторы постоянного тока независимого возбуждения, называемые возбудителями В (рис. 1.3, а). Обмотка возбуждения (ОВ ) получает питание от другого генератора (параллельного возбуждения), называемого подвозбудителем (ПВ ). Ротор синхронного генератора, возбудителя и подвозбудителя располагаются на общем валу и вращаются одновременно. При этом ток в обмотку возбуждения синхронного генератора поступает через контактные кольца и щётки. Для регулирования тока возбуждения применяют регулировочные реостаты, включаемые в цепи возбуждения возбудителя r 1 и подвозбудителя r 2 . В синхронных генераторах средней и большой мощности процесс регулирования тока возбуждения автоматизируют.

В синхронных генераторах получила применение также бесконтактная система электромагнитного возбуждения, при которой синхронный генератор не имеет контактных колец на роторе. В качестве возбудителя в этом случае применяют обращенный синхронный генератор переменного тока В (рис. 1.3, б). Трехфазная обмотка 2 возбудителя, в которой наводится переменная ЭДС, расположена на роторе и вращается вместе с обмоткой возбуждения синхронного генератора и их электрическое соединение осуществляется через вращающийся выпрямитель 3 непосредственно, без контактных колец и щёток. Питание постоянным током обмотки возбуждения 1 возбудителя В осуществляется от подвозбудителя ПВ – генератора постоянного тока. Отсутствие скользящих контактов в цепи возбуждения синхронного генератора позволяет повысить её эксплуатационную надёжность и увеличить КПД.

В синхронных генераторах, в этом числе гидрогенераторах, получил распространение принцип самовозбуждения (рис. 1.4, а), когда энергия переменного тока, необходимая для возбуждения, отбирается от обмотки статора синхронного генератора и через понижающий трансформатор и выпрямительный полупроводниковый преобразователь ПП преобразуется в энергию постоянного тока. Принцип самовозбуждения основан на том, что первоначальное возбуждение генератора происходит за счёт остаточного магнетизма машины.

На рис. 1.4, б представлена структурная схема автоматической системы самовозбуждения синхронного генератора (СГ ) с выпрямительным трансформатором (ВТ ) и тиристорным преобразователем (ТП ), через которые электроэнергия переменного тока из цепи статора СГ после преобразования в постоянный ток подаётся в обмотку возбуждения. Управление тиристорным преобразователем осуществляется посредством автоматического регулятора возбуждения АРВ , на вход которого поступают сигналы напряжения на входе СГ (через трансформатор напряжения ТН ) и тока нагрузки СГ (от трансформатора тока ТТ ). Схема содержит блок защиты (БЗ ), обеспечивающий защиту обмотки возбуждения (ОВ ) от перенапряжения и токовой перегрузки.

Мощность, затрачиваемая на возбуждение, обычно составляет от 0,2 до 5 % полезной мощности (меньшее значение относится к генераторам большой мощности).
В генераторах малой мощности находит применение принцип возбуждения постоянными магнитами, расположенными на роторе машины. Такой способ возбуждения даёт возможность избавить генератор от обмотки возбуждения. В результате конструкция генератора существенно упрощается, становится более экономичной и надёжной. Однако, из-за высокой стоимости материалов для изготовления постоянных магнитов с большим запасом магнитной энергии и сложности их обработки применение возбуждения постоянными магнитами ограничено машинами мощностью не более нескольких киловатт.

Синхронные генераторы составляют основу электроэнергетики, так как практически вся электроэнергия во всём мире вырабатывается посредством синхронных турбо- или гидрогенераторов.
Так же синхронные генераторы находят широкое применение в составе стационарных и передвижных электроустановок или станций в комплекте с дизельными и бензиновыми двигателями.

Асинхронный генератор. Отличия от синхронного

Асинхронные генераторы принципиально отличаются от синхронных отсутствием жесткой зависимости между частотой вращения ротора и вырабатываемой ЭДС. Разницу между этими частотами характеризует коэффициент s - скольжение.

s = (n - n r)/n

здесь:
n - частота вращения магнитного поля (частота ЭДС).
n r - частота вращения ротора.

Более подробно с расчётом скольжения и частоты можно ознакомиться в статье: асинхронные генераторы. Частота .

В обычном режиме электромагнитное поле асинхронного генератора под нагрузкой оказывает тормозной момент на вращения ротора, следовательно, частота изменения магнитного поля меньше, поэтому скольжение будет отрицательным. К генераторам, работающим в области положительных скольжений, можно отнести асинхронные тахогенераторы и преобразователи частоты.

Асинхронные генераторы в зависимости от конкретных условий применения выполняются с короткозамкнутым, фазным или полым ротором. Источниками формирования необходимой энергии возбуждения ротора могут являться статические конденсаторы или вентильные преобразователи с искусственной коммутацией вентилей.

Асинхронные генераторы можно классифицировать по способу возбуждения, характеру выходной частоты (изменяющаяся, постоянная), способу стабилизации напряжения, рабочим областям скольжения, конструктивному выполнению и числу фаз.
Последние два признака характеризуют конструктивные особенности генераторов.
Характер выходной частоты и методы стабилизации напряжения в значительной степени обусловлены способом образования магнитного потока.
Классификация по способу возбуждения является основной.

Можно рассмотреть генераторы с самовозбуждением и с независимым возбуждением.

Самовозбуждение в асинхронных генераторах может быть организовано:
а) с помощью конденсаторов, включенных в цепь статора или ротора или одновременно в первичную и вторичную цепи;
б) посредством вентильных преобразователей с естественной и искусственной коммутацией вентилей.

Независимое возбуждение может осуществляться от внешнего источника переменного напряжения.

По характеру частоты самовозбуждающиеся генераторы разделяются на две группы. К первой из них относятся источники практически постоянной (или постоянной) частоты, ко второй переменной (регулируемой) частоты. Последние применяются для питания асинхронных двигателей с плавным изменением частоты вращения.

Более подробно рассмотреть принцип работы и конструктивные особенности асинхронных генераторов планируется рассмотреть в отдельных публикациях.

Асинхронные генераторы не требуют в конструкции сложных узлов для организации возбуждения постоянным током или применения дорогостоящих материалов с большим запасом магнитной энергии, поэтому находят широкое применение у пользователей передвижных электроустановок по причине своей простоты и неприхотливости в обслуживании. Используются для питания устройств, не требующих жёсткой привязки к частоте тока.
Техническим достоинством асинхронных генераторов можно признать их устойчивость к перегрузкам и коротким замыканиям.
С некоторой информацией по мобильным генераторным установкам можно ознакомиться на странице:
Дизель-генераторы .
Асинхронный генератор. Характеристики .
Асинхронный генератор. Стабилизация .

Замечания и предложения принимаются и приветствуются!

Из истории вопроса. На сегодняшний день в моей работе возник вопрос об участии в проекте по внедрению собственной малой генерации на предприятии. Ранее, был опыт работы с синхронными электродвигателями, с генераторами опыт минимальный.

Рассматривая предложения различных производителей в одном из таких открыл для себя способ возбуждения синхронного генератора при помощи подвозбудителя на основе генератора на постоянных магнитах (PMG). Обмолвлюсь, что система возбуждения генератора планируется бесщеточная. Пример синхронных электродвигателей я описывал ранее.

И так, из описания генератора (PMG) на постоянных магнитах в качестве подвозбудителя обмотки возбуждения возбудителя генератора следует:

1. Теплообменник типа «воздух-вода». 2. Генератор с постоянным магнитом. 3. Устройство возбуждения. 4. Выпрямитель. 5. Радиальный вентилятор. 6. Воздушный канал.

В данном случае система возбуждения состоит из вспомогательных обмоток или генератора с постоянным магнитом, автоматического регулятора напряжения (AVR), CT и VT для определения тока и напряжения, встроенного устройства возбуждения и вращающегося выпрямителя. В стандартном случае турбогенераторы оборудованы цифровым AVR, обеспечивающим регулирование PF (коэффициента мощности) и выполнение различных функций мониторинга и защиты (ограничение возбуждения, обнаружение перегрузки, возможность резервирования и т.д.). Постоянный ток возбуждения, идущий от AVR, усиливается вращающимся устройством возбуждения и затем выпрямляется вращающимся выпрямителем. Вращающийся выпрямитель состоит из диодов и стабилизаторов напряжения.

Схематичные изображение системы возбуждения турбогенератора с использованием PMG:

Решение с применением генератора на постоянных магнитах (PMG) на главном валу с ротором генератора и бесщеточным возбудителем:

Собственно, на данный момент говорить о преимуществах данного способа регулирования возбуждения для меня не представляется возможным. Думаю, со временем набора информации и опыта поделюсь с вами своим опытом применения PMG.

Содержание:

В современных условиях предпринимаются постоянные попытки усовершенствования электромеханических устройств, снижения их массы и габаритных размеров. Одним из таких вариантов является генератор на постоянных магнитах, представляющий собой достаточно простую конструкцию с высоким коэффициентом полезного действия. Основная функция данных элементов заключается в создании вращающегося магнитного поля.

Виды и свойства постоянных магнитов

С давних пор были известны постоянные магниты, получаемые из традиционных материалов. В промышленности впервые начал использоваться сплав алюминия, никеля и кобальта (алнико). Это дало возможность применять постоянные магниты в генераторах, двигателях и других видах электрооборудования. Особенно широкое распространение получили ферритовые магниты.

Впоследствии были созданы самарий-кобальтовые жесткие магнитные материалы, энергия которых обладает высокой плотностью. Вслед за ними произошло открытие магнитов на основе редкоземельных элементов - бора, железа и неодима. Плотность их магнитной энергии значительно выше, чем самарий-кобальтового сплава при значительно низкой стоимости. Оба вида искусственных материалов успешно заменяют электромагниты и применяются в специфических областях.Неодимовые элементы относятся к материалам нового поколения и считаются наиболее экономичными.

Принцип работы устройств

Главной проблемой конструкции считался возврат вращающихся деталей в исходной положение без существенных потерь крутящего момента. Данная проблема была решена с помощью медного проводника, по которому был пропущен электрический ток, вызывающий притяжение. При отключении тока, действие притяжения прекращалось. Таким образом, в устройствах этого типа использовалось периодическое включение-отключение.

Повышенный ток создает увеличенную силу притяжения, а та, в свою очередь, участвует в выработке тока, проходящего через медный проводник. В результате циклических действий, устройство, кроме совершения механической работы, начинает производить электрический ток, то есть выполнять функции генератора.

Постоянные магниты в конструкциях генераторов

В конструкциях современных устройств, кроме постоянных магнитов применяются электромагниты с в катушке. Такая функция комбинированного возбуждения позволяет получить необходимые регулировочные характеристики напряжения и частоты вращения при пониженной мощности возбуждения. Кроме того, уменьшается величина всей магнитной системы, что делает подобные устройства значительно дешевле по сравнению с классическими конструкциями электрических машин.

Мощность устройств, в которых используются данные элементы может составлять только несколько киловольт-ампер. В настоящее время ведутся разработки постоянных магнитов с лучшими показателями, обеспечивающими постепенный рост мощности. Подобные синхронные машины используются не только в качестве генераторов, но и как двигатели различного назначения. Они широко применяются в горнодобывающей и металлургической отрасли, тепловых станциях и других сферах. Это связано с возможностью работы синхронных двигателей с различными реактивными мощностями. Сами они работают с точной и постоянной скоростью.

Станции и подстанции функционируют вместе со специальными синхронными генераторами, которые в режиме холостого хода обеспечивают выработку только реактивной мощности. В свою очередь, обеспечивает работу асинхронных двигателей.

Генератор на постоянных магнитах работает по принципу взаимодействия магнитных полей движущегося ротора и неподвижного статора. Не до конца изученные свойства этих элементов позволяют работать над изобретением других электротехнических устройств, вплоть до создания безтопливного .

Синхронные генераторы

с возбуждением от постоянных магнитов

(разработано в 2012 г.)

Предлагаемый генератор по принципу действия является синхронным генератором с возбуждением от постоянных магнитов. Магниты состава NeFeB, создающие магнитное поле с индукцией 1,35 Тл , расположены по окружности ротора с чередованием полюсов.

В обмотках генератора возбуждается э. д.с., амплитуда и частота которой определяются скоростью вращения ротора генератора.

Конструкция генератора не содержит коллектора с размыкаемыми контактами. Генератор также не имеет обмоток возбуждения, потребляющих дополнительный ток.

Преимущества генератора предлагаемой конструкции:

1. Обладает всеми положительными чертами синхронных генераторов с возбуждением от постоянных магнитов:

1) отсутствие токосъёмных щеток,

2) отсутствие тока возбуждения.

2. Большинство аналогичных выпускающихся в настоящее время генераторов при той же мощности имеют массо - габаритные параметров 1,5 – 3 раза больше.

3. Номинальная скорость вращения вала генератора – 1600 об ./мин . Она соответствует скорости вращения тихоходных дизельных приводов. Поэтому при переводе индивидуальных энергоустановок с бензиновых двигателей на дизельные с использованием нашего генератора, потребитель получит существенную экономию горючего и, как следствие, – стоимость киловатт-часа понизится.

4. Генератор имеет маленький стартовый момент страгивания (менее 2 Н×м ), т. е. для пуска достаточно мощности привода всего в 200 Вт , и запуск генератора возможен от самого дизеля при старте, даже без муфты сцепления. Аналогичные рыночные двигатели имеют разгонный период для создания запаса мощности при пуске генератора, т. к. при пуске бензиновый двигатель работает в режиме дефицита мощности.


5. При уровне надежности 90% ресурс генератора составляет 92 тыс. часов (10,5 лет безостановочной работы). Цикл же работы двигателя привода между капитальными ремонтами , заявляемый производителями (равно как и рыночных аналогов генератора) составляет 25 – 40 тыс. часов. То есть наш генератор по надежности на наработку превышает надежность серийных двигателей и генераторов в 2-3 раза.

6. Простота изготовления и сборки генератора – сборочным участком может быть слесарная мастерская при штучном и малосерийном производстве.

7. Простая адаптация генератора под выходное напряжение переменного тока:

1) 36 В , частота 50 – 400 Гц

2) 115 В , частота 50 – 400 Гц (аэродромные энергоустановки);

3) 220 В , частота 50 – 400 Гц ;

4) 380 В , частота 50 – 400 Гц .

Базовая конструкция генератора позволяет настраивать выпускаемое изделие на различную частоту и различное напряжение без изменения конструкции.

8. Высокая пожаробезопасность. Предлагаемый генератор не может стать источником пожара даже при коротком замыкании в цепи нагрузки или в обмотках, что заложено в конструкцию системы. Это очень важно при использовании генератора для бортовой электростанции в условиях замкнутого пространства водного судна, воздушного судна, а так же частного деревянного домостроения и т. п.

9. Низкий уровень шума.

10. Высокая ремонтопригодность.

Параметры генератора мощностью 0,5 кВт

Параметры генератора мощностью 2,5 кВт

ИТОГИ:

Предлагаемый генератор может изготавливаться для использования в электрогенераторных установках с частотой вращения вала 1500-1600 об/мин. - в дизельных, бензиновых и паро-генераторных электростанциях индивидуального пользования или в локальных энергетических системах. В паре с мультипликатором , электромеханический преобразователь энергии может использоваться и для генерации электроэнергии в низкооборотных генераторных системах, типа ветроэлектростанций, волновых электростанций и т. п. любой мощности. То есть сфера применения электро-механического преобразователя делает предлагаемый комплекс (мультипликатор-генератор) универсальным. Приведенные в тексте массогабаритные и иные электро-технические параметры дают предлагаемой конструкции явные конкурентные преимущества на рынке по сравнению с аналогами.

Заложенные в основу конструкции принципы изготовления, имеют высокую технологичность, в основе своей не требуют прецизионного станочного парка и ориентированы на массовое серийное производство. В итоге конструкция будет иметь низкую себестоимость серийного производства.