Влагоемкость почвы равна 25 то ее оценка. Влагоемкость почвы и методы ее определения. Определение водопроницаемости почвы


Полная влагоемкость, определяемая в трубках, всегда бывает несколько меньше общей порозности, так как при погружении в воду образца почвы в нем сохраняется около 8% защемленного воздуха.
Полную влагоемкость почвы с нарушенным строением определяют в металлических цилиндрах с сетчатым дном или в стеклянных трубках, обвязанных с одного конца марлей. Диаметр трубки 5-6 см, высота 15-18 см. На сетчатое дно накладывают кружок фильтровальной бумаги и смачивают водой. После стекания излишка воды взвешивают трубку на технических весах с точностью 0,05 г (удобны весы BЛTK-500).
Цилиндр наполняют на 8/4 высоты просеянной через грохот почвой. Почву вносят небольшими порциями и уплотняют постукиванием трубки или осторожным уминанием, добиваясь того же уплотнения, которое принято для сосудов вегетационного опыта. Одновременно берут пробу для определения влажности исходной почвы.
После наполнения почвой цилиндр взвешивают и по разности между весом цилиндра с почвой и пустого цилиндра определяют навеску исходной почвы. Зная влажность почвы, вычисляют вес абсолютно сухой почвы в цилиндре.
Цилиндр с почвой прикрывают сверху стеклом, ставят в сосуд с водой, доводят уровень ее до уровня почвы в цилиндре и оставляют на сутки. Через сутки вынимают цилиндр из воды, обтирают фильтровальной бумагой и взвешивают. Еще через сутки повторяют взвешивание. При получении близких данных насыщение прекращают.
Влагоемкость выражают в весовых или объемных процентах. Для перевода в объемные весовые данные следует умножить на объемный вес. Отношение веса поглощенной воды к весу сухой почвы определяет полную влагоемкость в весовых процентах.
Запись результатов определения:
Вес цилиндра с увлажненной обвязкой (а).
Вес цилиндра с почвой (b).
Навеска исходной почвы (b - а).
Навеска абсолютно сухой почвы (d).
Вес трубки с почвой после насыщения (с).
Вес поглощенной воды (с - а - d).
Полную влагоемкость (в % на абсолютно сухую почву) определяют по формуле:

Влагоемкость почвы – величина, которая количественно характеризует водоудерживающую способность почвы. Как и влажность, влагоемкость определяется в % к весу сухой почвы. В зависимости от сил, удерживающих влагу в почвах, различают три основные категории влагоемкости: полная, наименьшая и капиллярная.

Полная влагоемкость – это максимальное количество воды, которое может удерживать почва с использованием всех влагоудерживающих сил.

Наименьшая влагоемкость – это максимальное количество воды, которое почва может удерживать в химических связях и коллоидных системах.

Капиллярная влагоемкость – это максимальное количество воды, которое почва может удеживать в своих капиллярах.

Материалы и оборудование

1) стеклянные цилиндры без дна; 2) марля; 3) ванночки; 4) фильтровальная бумага; 5) технические весы; 6) образцы почвы.

Ход работы

Стеклянный цилиндр без дна обвязывают марлей с нижнего конца. В предварительно взвешенный на технических весах цилиндр насыпают, слегка уплотняя постукиванием, почву на высоту 10 см. Определяют массу цилиндра с почвой. Далее цилиндр с почвой помещают в специальную ванночку с водой – так, чтобы дно цилиндра стояло на фильтровальной бумаге, концы которой опущены в воду.

Вода по порам бумаги передается почве, производя ее капиллярное насыщение. Через каждые сутки цилиндр взвешивают на технических весах до тех пор, пока его масса не перестанет возрастать. Это укажет на то, что почва достигла полного капиллярного насыщения. Капиллярную влагоёмкость рассчитывают по формуле:

где КВ – капиллярная влагоёмкость, %;В – масса почвы в цилиндре после насыщения, г;

М – масса абсолютно сухой почвы, г.

Поскольку в цилиндр помещается воздушно-сухая навеска, а расчеты производятся на массу абсолютно сухой почвы, поэтому массу абсолютно сухой почвы предварительно надо вычислить, используя значение коэффициента пересчёта, полученное в предыдущей работе (все лабораторные работы выполняются с тем же почвенным образцом) по формуле:

где М – масса абсолютно сухой почвы,b – вес воздушно-сухой почвы,

k H 2 O ‑ коэффициент гигроскопичности.

Полученные результаты занести в таблицу.

Лабораторная работа № 7

Определение кислотности почвы

Основные сведения по теме работы

Кислотность почв – это их способность обуславливать кислую реакцию почвенного раствора за счет наличия в ней катионов водорода. Наиболее распространенным источником кислотности почв являются фульвокислоты, которые образуются при разложении растительных остатков. Кроме них в почве присутствуют многие низкомолекулярные кислоты – органические (масляная, уксусная) и неорганические (угольная, серная, соляная).

Кислотность – это диагностический параметр, оказывающий значительное влияние на жизнь обитателей почвы и произрастающих на ней растений. Для большинства сельскохозяйственных культур оптимальные диапазоны кислотности близки к нейтральным, однако многие естественные почвы являются щелочными или кислыми, поэтому возникает необходимость оценки и, при необходимости, коррекции их кислотности.

Избыточная кислотность прямо или косвенно оказывает негативное влияние на растения. Подкисление почв приводит к нарушению их структуры, что в свою очередь вызывает резкое ухудшение аэрации и капиллярных свойств почвы. Избыточная кислотность подавляет жизнедеятельность полезных микроорганизмов (особенно нитрификаторов и азотфиксаторов), усиливает связывание фосфора алюминием, что нарушает ионообменные процессы в корнях растений. В конечном счете, эти процессы приводят к закупорке корневых сосудов и отмиранию корневой системы.

Различают две формы кислотности - актуальную и потенциальную.

    Актуальная кислотность обусловлена наличием в почвенном растворе свободных ионов водорода, образовавшихся в результате диссоциации водорастворимых органических и слабых минеральных кислот, а также гидролитически кислых солей. Она непосредственно влияет на развитие растений и микроорганизмов.

    Потенциальная кислотность характеризуется наличием в почвенно-поглотительном комплексе ионов Н + и Al 3+ , которые при взаимодействии твердой фазы с катионами солей вытесняются в почвенный раствор и подкисляют его.

Определение кислотности почвы как правило проводится потенциометрическим методом. Он основан на измерении электродвижущей силы в цепи, состоящей из двух полуэлементов: электрода измерения, погруженного в испытуемый раствор, и вспомогательного электрода с постоянным значением потенциала. Прибор для измерения рН называется потенциометром или рН-метром.

Результаты потенциометрического измерения рН почвы оцениваются по стандартным шкалам. В практическом почвоведении используется классификация почв по уровню рН водной вытяжки (актуальная кислотность) или солевой вытяжки (потенциальная кислотность) (табл. 6).

Табл. 6. Классификация почв по уровню кислотности

Тип почвы

Очень сильнокислые

Сильнокислые

Слабокислые

Близкие к нейтральным

Нейтральные

Слабощелочные

Щелочные

Сильнощелочные

Очень сильнощелочные

Материалы и оборудование

1) химические стаканчики на 100-150 мл, 2) 1 N раствор КСl, 3) потенциометр (рН-метр), 4) технические весы; 5) образцы почвы.

Ход работы

Для определения актуальной кислотности следует на технических весах взвесить 20 г воздушно-сухой почвы. Навеску поместить в химический стакан на 100-150 мл и прилить 50 мл дистиллированной воды. Содержимое перемешивать 1-2 мин и оставить стоять 5 мин. Перед определением суспензию еще раз перемешать, после чего полностью погрузить в нее электрод измерения и электрод сравнения. Через 30-60 сек. отсчитать по шкале потенциометра значение рН, соответствующее измеряемой кислотности почвенной суспензии.

Для определения потенциальной кислотности к навеске почвы 20 г приливают 50 мл 1N р-ра КСl. Дальнейший ход анализа тот же, что и при определении актуальной кислотности.

Результаты работы занести в таблицу:

Лабораторная работа № 8

ВЛАГОЕМКОСТЬ ПОЧВЫ -способность почвы удерживать алагу; выражается в процентах от объема или от массы почвы.[ ...]

Полная влагоемкость (ПВ) - наибольшее количество воды, которое может вместить почва при полном заполнении всех пор водой. Если гравитационная вода не подпирается грунтовыми водами, то она стекает в более глубокие горизонты. Наибольшее количество воды, которое остается в почве после обильного увлажнения и стекания всей гравитационной воды при отсутствии слоистости почвы и подпирающего действия грунтовых вод, называется наименьшей или предельно-полевой влагоемкостью (НВ или ППВ).[ ...]

Высокой влагоемкостью обладают лесная подстилка и почва. Наименьшая водопроницаемость свойственна солонцовым почвам, а также сильно подзолистым суглинистым и глинистым, наибольшая - темно-серым почвам и особенно черноземам.[ ...]

Наименьшая влагоемкость (НВ) - это максимальное количество капиллярно-подвешенной влаги, которое способна длительное время удерживать почва после обильного ее увлажнения и свободного стекания воды при условии исключения испарения и капиллярного увлажнения за счет грунтовой воды.[ ...]

Под динамической влагоемкостью понимают количество воды, удерживаемое почвой после полного насыщения и стекания свободной воды при данном уровне грунтовых вод. Динамическая влаго-емкость тем ближе к предельной полевой, чем глубже от дневной поверхности залегает зеркало грунтовых вод. Динамическую влаго-емкость целесообразно определять на монолитах при стоянии грунтовых вод на глубине 45-50 см, 70-80 и 100-110 см.[ ...]

Благодаря высокой влагоемкости и поглотительной способности торф является прекрасным материалом для использования на подстилку животным. Он может поглощать воды в несколько раз больше своего веса. Особенно ценные для подстилки верховые торфы со степенью разложения до 15% и зольностью не выше 10%. Содержание влаги не должно превышать 50%.[ ...]

Полная капиллярная влагоемкость песка или почвы - это количество воды, удерживаемое капиллярными силами в 100 г абсолютно сухого песка или почвы. Для определения влагоемкости служат специальные металлические цилиндры диаметром 4 см, высотой 18 см. Цилиндр имеет сетчатое дно, расположенное на расстоянии 1 см от его нижнего края. На дно цилиндра кладут двойной кружок влажной фильтровальной бумаги, взвешивают цилиндр на технических весах и насыпают в него почти доверху песок, слегка постукивая по стенкам цилиндра, благодаря чему песок будет лежать более плотно. Цилиндры ставят на дно кристаллизатора с небольшим слоем воды. Уровень воды в кристаллизаторе должен быть на 5 - 7 мм выше уровня сетчатого дна. Для уменьшения испарения воды всю установку или только цилиндры закрывают стеклянным колпаком. После того как вода поднимется до поверхности песка, что заметно по изменению его цвета, цилиндры вынимают из воды, обсушивают снаружи и ставят на фильтровальную бумагу. Как только вода перестанет стекать, цилиндры взвешивают на технических весах и на 1 - 2 ч помещают в кристаллизатор под колпак и вновь взвешивают. Эту операцию повторяют до тех пор, пока вес цилиндра с почвой, поглотившей воду, не станет постоянным. Нельзя после первого взвешивания ставить цилиндр в воду на длительное время, так как тогда может произойти сильное уплотнение почвы. Определение влагоемкости проводят в двукратной повторности. Одновременно берут две пробы для определения влажности.[ ...]

Полная (максимальная) влагоемкость (ПВ), или водовмести-мость, - это количество влаги, удерживаемое почвой в состоянии полного насыщения, когда все поры (капиллярные и некапиллярные) заполнены водой.[ ...]

Максимальная молекулярная влагоемкость (ММВ) соответствует наибольшему содержанию рыхлосвязанной воды, удерживаемой сорбционными силами или силами молекулярного притяжения.[ ...]

Общая (по Н. А. Качинскому) или наименьшая (по А. А. Роде) влагоемкость почвы или предельная полевая (по А. П. Розову) и полевая (по С. И. Долгову)-количество влаги, которое почва удерживает после увлажнения при свободном оттоке гравитационной воды. Разноименность этой важной гидрологической константы вносит много путаницы. Неудачен термин «наименьшая влагоемкость», так как он противоречит факту максимального содержания при этом влаги в почве. Не совсем удачны и два других термина, но, поскольку нет более подходящего названия, впредь мы будем использовать термин «общая влагоемкость». Название «общая» Н. А. Качинский объясняет тем, что влажность почвы при этой гидрологической константе включает в себя все основные категории почвенной влаги (кроме гравитационной). Константу, характеризующую общую влагоемкость, широко используют в мелиоративной практике, где ее называют полевой влагоемкостью (ПВ), что наряду с общей влагоемкостью (ОБ)-наиболее распространенный термин.[ ...]

При длительном состоянии насыщения почв водой до полной влагоемкости в них развиваются анаэробные процессы, снижающие ее плодородие и продуктивность растений. Оптимальной для растений считается относительная влажность почв в пределах 50- 60 % ПВ.[ ...]

Значительно различаются почвы исследованных групп ТЛУ и по общей влагоемкости основного корнеобитаемого слоя: в I группе полевая или наименьшая влагоемко сть составляет 50-60 мм, во II - 90-120 мм, в III - 150-160 мм. Диапазон доступной влаги равен соответственно 39-51 мм, 74-105 мм и 112-127 мм. Такая разница связана как с мощностью почв, так и в большей степени с возрастанием влагоемкости верхних горизонтов. Наибольшей влагоемкостью обладает верхний 10-санти-метровый слой почвы. С глубиной влагоемкость, как правило, снижается, а диапазон доступной влаги уменьшается во всех случаях. В почвах I группы ТЛУ в верхнем 10-сантиметровом слое содержится до 60 % всех запасов влаги при полевой влагоемкости, а в почвах III группы эта доля снижается до 30 %.[ ...]

Подготовительной работой является определение гигроскопической воды и влагоемкости почвы.[ ...]

Влажность в сосудах с отверстиями в дне поддерживается на уровне полной влагоемкости почвы. Для этого сосуды ежедневно поливают до протекания в поддонник первой капяи жидкости. Во время дождя поливать не надо; следует даже заботиться о том, чтобы дождь не переполнил поддонника, ибо тогда питательный раствор будет потерян. Именно поэтому объем поддонника должен быть не менее 0,5 л, лучше - до 1 л. Прежде чем поливать сосуд, в него переливают всю жидкость из поддонника. Если ев слишком много, переливают до просачивания первой капли.[ ...]

На дно сосуда слоем 1-1,5 см помещают чистый песок, увлажненный до 60% своей влагоемкости (15 мл воды на 100 г). На сосуд берут около 200 г песка.[ ...]

Если в тяжелосуглинистой почве влажность завядания составляет 12%, а общая влагоемкость равна 30%, то диапазон активной влаги "(¥дав = 30 - 12 = 18%.[ ...]

Для почв нормального увлажнения состояние влажности, соответствующее полной влагоемкости, может быть после снеготаяния, обильных дождей или при поливе большими нормами воды. Для избыточно влажных (гидроморфных) почв состояние полной влагоемкости может быть длительным или постоянным.[ ...]

Установлено, что оптимальной влажностью для нитрификации является 50-70% от полной влагоемкости почвы, оптимальной температурой является 25-30°.[ ...]

Использование торфа на подстилку. Торф - прекрасный подстилочный материал. Высокая влагоемкость его обусловливает максимальное поглощение жидких выделений животных, а кислотность и большая емкость поглощения - сохранение аммиачного азота.[ ...]

Количество гравитационной воды определяют как разность между водовместимостью и общей влагоемкостью (№в-ОВ).[ ...]

Вначале (несколько дней) растения поливают во всех сосудах равным количеством воды, в дальнейшем - до 60 - 70% от влагоемкости абсолютно сухого песка. Зная вес абсолютно сухого песка в сосуде, рассчитывают, какое количество воды должно быть в нем. На этикетке сосуда пишут вес для полива. Он является суммой следующих величин: веса тарированного сосуда, веса абсолютно сухого песка, веса воды.[ ...]

Допустим, что на площади в 1 га плотность (удельная ¡масса) почвы слоем от 0 до 10 см в глубину составляет 1100 ¡кг/м3, а влагоемкость - не менее 27,4 весового процента. Для одного гектара это соответствует 301 м3 воды. Если доступная влага в данном случае составляет 19,8 весового процента, для рассматриваемого слоя почвы это будет соответствовать 218 м3 воды (такое количество воды равно 21,8 мм доступных осадков). Поверхностно внесенный гербицид, растворяясь в дополнительных осадках и почвенном растворе, проникает в почву за счет диффузионного переноса последнего, т. е. этому -процессу способствует ¡почвенная влага. В почве, где содержание воды намного ниже капиллярной влагоемкости, растворение и проникание гербицидов затрудняется. И наоборот, если почва насыщена влагой и ее верхний слой не высох, для обеспечения проникания и диффузии гербицидов достаточно осадков меньше расчетного уровня.[ ...]

Гравий (3-1 мм) - обломки первичных минералов, водопроницаемость провальная, водоподъемная способность отсутствует, влагоемкость очень низкая ([ ...]

Максимальное количество капиллярно-подпертой влаги, которое может содержаться в почве над уровнем грунтовых вод, называется капиллярной влагоемкостью (КВ).[ ...]

Существуют два типа сосудов: сосуды Вагнера и сосуды Митчерлиха. В металлических сосудах первого типа полив производится по весу до 60 - 70% от полной влагоемкости почвы через впаянную сбоку трубку, в стеклянных сосудах - через стеклянную трубку, вставленную в сосуд. В сосудах Митчерлиха на дне имеется продолговатое отверстие, закрытое сверху желобом.[ ...]

Ухудшение аэрации в результате повышения влажности почвы приводит к снижению ОВ-потенциала. Наиболее резко он падает при влажности, близкой к полной влагоемкости (>90 % ПВ), когда сильно нарушается нормальный газообмен почвенного воздуха с атмосферным. При повышении влажности с 10 до 90 % ПВ снижение потенциала в большинстве почв происходит медленно.[ ...]

Для растений не так важно общее количество почвенной влаги, как доступность. Уровень доступной растениям воды находится между точкой устойчивого завядания и полевой влагоемкостью. Эту воду часто называют капиллярной. В почве она удерживается в тонких порах, где ее стеканию препятствуют капиллярные силы, а также в виде пленок вокруг почвенных частиц (рис. 60). Почвы различаются по своей способности удерживать влагу, что связано с их механическим составом (табл. 8). Хотя песчаные почвы лучше дренированы и аэрированы, но они обладают более низкой водоудерживающей способностью, чем глинистые почвы. Общее количество капиллярной воды в песчаных почвах может быть увеличено путем повышения содержания в них органического вещества. Количество доступной для растений воды зависит от многих факторов, в том числе от типа и глубины почвы, глубины залегания корневой системы культуры, скорости потери воды на испарение и транспирацию, температуры и скорости поступления дополнительной воды. Кроме того, содержание доступной растениям воды имеет значение само по себе. Чем меньше воды в почве, тем прочнее она удерживается. Прочность измеряется в атмосферах давления, требующегося для отнятия воды. При полевой влагоемкости вода удерживается силой примерно 15 атм.[ ...]

Опытными данными установлено, что благодаря внесению в почву гуматов от 0,1 до 3% массы грунта формируется в течение от 2 недель до 3 месяцев характерная почвенная структура. Влагоемкость в глинистых грунтах возрастает на 15-20%, в суглинистых - на 20-30%, в супесчаных и песчаных грунтах- в 5-10 раз. Устойчивость грунтов к водной эрозии увеличивается в 4-8 раз при хорошем развитии растительности .[ ...]

Для пояснения терминов, применяемых в табл. 5.2.1 и при описании водного режима почв, ниже приведена краткая характеристика выделяемых категорий почвенной влаги. Наименьшая влагоемкость (НВ) - наибольшее количество впитавшейся в почву воды, удерживаемой в капиллярах почвы после стекания свободной гравитационной влаги. Капиллярная влага, содержащаяся в почве при НВ, имеет высокую степень подвижности и доступности для растений. При влажности 80-100% от НВ в почве складываются наиболее благоприятные условия для влагоснабжения растений.[ ...]

В бесструктурной распыленной почве тяжелого механического состава складывается неблагоприятный физический режим. Вода и воздух в ней являются антагонистами. Порозность и влагоемкость представлены малыми величинами. Вследствие плохой водопроницаемости бесструктурная почва плохо впитывает воду, сток ее по поверхности приводит к эрозии. Плохая водопроницаемость, малая влагоемкость не обеспечивают достаточных запасов воды. Весной и осенью поры в такой почве бывают заполнены водой, а воздух в них отсутствует. С повышением же температуры благодаря тонкопористому сложению происходит интенсивное испарение воды и просушивание почвы на большую глубину. Растения в этот период страдают от засухи. После дождя или полива поверхность бесструктурной почвы заплывает, резко повышается липкость. При высыхании такая почва сильно уплотняется, на поверхности поля образуется плотная корка, что затрудняет рост и развитие растений. При сильном просушивании образуются глубокие трещины и при этом корни растений могут быть порваны. Требуются повторные рыхления после дождя и поливов. Распыленные почвы легко подвергаются ветровой эрозии.[ ...]

Зеленое удобрение, как и другие органические удобрения, запаханное в почву, несколько снижает ее кислотность, уменьшает подвижность алюминия, повышает буферность, емкость поглощения, влагоемкость, водопроницаемость, улучшает структуру почвы. О положительном влиянии зеленого удобрения на физические и физико-химические свойства почвы свидетельствуют данные многочисленных исследований. Так, в песчаной почве Новозыбковской опытной станции к концу четырех ротаций севооборота с чередованием пар - озимые - картофель - овес, в зависимости от использования люпина в виде самостоятельной культуры в пару и пожнивной культуры после озимых, содержание гумуса и величина капиллярной влагоемкости почвы были различны (табл. 136).[ ...]

Очень важно при проведении опыта поддерживать во всех сосудах одинаковую (и достаточную) влажность почвы. Для установления желательной влажности необходимо знать водные свойства почвы, в частности ее влагоемкость и влажность при набивке сосудов. Влажность почвы в сосудах доводят обычно до 60-70% ее капиллярной влагоемкости и поддерживают на этом уровне в течение всей вегетации растений. Регулирование ее в сосудах осуществляют ежедневным поливом растений по весу сосуда.[ ...]

Количество воды в почве может быть выражено различными способами. Для некоторых целей влажность почвы определяют в миллиметрах на гектар. При определении физических условий почвы влажность выражают термином «полевая влагоемкость», которая имеет большое значение для сельского хозяйства. Под полевой влагоемкостью понимают максимальное количество воды, удерживаемое почвой после стекания внесенной на ее поверхность воды и после того, как невпитавшаяся (свободная вода) под действием силы тяжести удалится из почвы1.[ ...]

Гравий (3-1 мм) - состоит из обломков первичных минералов. Высокое содержание гравия в почвах не препятствует обработке, но придает им неблагоприятные свойства - провальную водопроницаемость, отсутствие водоподъемной способности, низкую влагоемкость. Влагоемкость гравия ([ ...]

Чтобы обеспечить постоянную работоспособность сушильного агента, необходимо удалять из камеры часть насыщенного влагой воздуха, а взамен него подавать свежий воздух, который при нагревании становится более сухим и, смешиваясь с рабочим сушильным агентом, повышает влагоемкость последнего. Он должен совершаться непрерывно в течение всего процесса сушки, за исключением начальной стадии - периода прогрева материала и тепловлагообработки.[ ...]

При НВ в почве 55-75 % пор заполнено водой, создаются оптимальные условия влаго- и воздухообеспеченности растений. Величина НВ зависит от гранулометрического состава, содержания гумуса и сложения почвы. Чем тяжелее почва по гранулометрическому составу, чем больше в ней гумуса, тем выше ее наименьшая влагоемкость. Очень рыхлая и сильноплотная почвы имеют меньшую влагоемкость (НВ), чем почвы средней плотности. Для суглинистых и глинистых почв величина НВ колеблется от 20 до 45 % абсолютной влажности почв. Наибольшие значения НВ характерны для гумусированных почв тяжелого гранулометрического состава с хорошо выраженной макро- и микроструктурой.[ ...]

В заключение можно отметить, что физические свойства подстилки на незаболоченных вырубках и на вырубках начальной стадии заболачивания (мощность подстилки до 13- 15 см) очень близки. Но в это время создаются сильные различия в водно-воздушном режиме. Торфянистая подстилка под кукушкиным льном в силу большей влагоемкости имеет менее благоприятный воздушный режим, особенно весной, и значительно более высокий запас влаги.[ ...]

С повышением влажности почвы гербицидная активность препаратов, как правило, повышалась, но в различной степени и до определенного предела. Наибольшая фитотоксичность препаратов при их заделке в почву проявилась при влажности 50-60% полной влагоемкости почвы.[ ...]

ДЦЭ а ДДД (рис. 2) обнаруживала тенденцию я исчезновению из почвы независимо от ее влажности. В условиях залива почвы водой или недостаточной аэрации продукты первоначального распада ДДГ - ДЯЭ и ДДД оказались более стойкими, чем 4,41-ДДТ. На-, против, при влажности почвы, оптимальной для развития растений и аэробной микрофлоры (60% от полной влагоемкости), более стойким соединением оказывался 4,41-ДДТ.[ ...]

Типичные черноземы имеют большей частью глинистый и тяжелосуглинистый механический состав. Удельный вес твердой фазы в них колеблется в интервале 2,38-2,59 г/см3; объемный вес - 0,93-0,99 г/см3; общая порозность сравнительно высокая, доходит до 63%, причем более 50% приходится на долю некапиллярной. Типичные черноземы отличаются хорошей водопроницаемостью. Полевая влагоемкость этих почв равна 39-41% (Гарифуллин, 1969).[ ...]

АБИОТИЧЕСКИЕ ФАКТОРЫ В ЭКОСИСТЕМАХ - факторы, разделяющиеся на радиацию (космическая, солнечная) с ее вековой, годовой и суточной цикличностью: на зональные, высотные и глубинные факторы распределения тепла и света с градиентами и закономерностями циркуляции воздушных масс; факторы литосферы с ее рельефом, различным минеральным составом и гранулометрией, тепло- и влагоемкостью; факторы гидросферы с градиентами ее состава, закономерностями водо- и газообмена.[ ...]

Одно из наиболее важных физических свойств почвы - ее механический состав, т.е. содержание частиц разного размера. Установлены четыре градации механического состава: песок, супесь, суглинок и глина. От механического состава зависят водопроницаемость почвы, ее способность удерживать влагу, проникновение в нее корней растений и др. Кроме того, каждая почва характеризуется плотностью, тепловыми свойствами, влагоемкостью и вла-гопроницаемостью. Большое значение имеет аэрация, т.е. насыщение почвы воздухом и способность к такому насыщению.[ ...]

Интенсивность впитывания зависит не только от водных свойств почво-грунтов, но в значительной степени определяется и их влажностью. Если почва сухая, она обладает большой инфильтрацион-ной способностью и в первый период времени после начала дождя интенсивность впитывания близка к интенсивности дождя. С увеличением влажности почво-грунтов интенсивность инфильтрации постепенно уменьшается и при достижении полной влагоемкости в стадии фильтрации становится постоянной, равной коэффициенту фильтрации (см. § 92) данного почво-грунта.[ ...]

Очень важной операцией по уходу за растениями в вегетационном опыте является полив. Сосуды поливают ежедневно, в ранние утренние или вечерние часы, в зависимости от темы опыта. Следует отметить, что полив водопроводной водой не годится при проведении опытов с известкованием. Полив проводят по весу до установленной для опыта оптимальной влажности. Для установления необходимой влажности почвы предварительно определяют полную влагоемкость и влажность ее при набивке сосудов. Вес сосудов к поливу вычисляют, исходя из желательной оптимальной влажности, которая обычно составляет 60-70% полной влагоемкости почвы, суммируя веса тарированного сосуда, песка, добавленного снизу и сверху сосуда при набивке и посеве, каркаса, сухой почвы и необходимого количества воды. Вес сосуда к поливу пишут на этикетке, наклеенной на чехле. В жаркую погоду приходится поливать сосуды дважды, один раз давая определенный объем воды, а другой раз доводя до заданного веса. Чтобы иметь более одинаковые условия освещения для всех сосудов, их ежедневно во время поливки меняют местами, а также передвигают на один ряд вдоль вагонетки. Сосуды помещают обычно на вагонетки; в ясную погоду их выкатывают на открытый воздух под сетку, а на ночь и в непогоду увозят под стеклянную крышу. Сосуды Митчерлиха устанавливают на неподвижно закрепленных столах под сеткой.[ ...]

Значительная часть торфяных болот Севера возникла на месте прежних сосновых и еловых лесов. На некоторой стадии выщелачивания лесных почв древесной растительности начинает не хватать питательных веществ. Появляется не требовательная к условиям питания моховая растительность, постепенно вытесняющая древесную. Нарушается водно-воздушный режим в поверхностных слоях почвы. В результате под пологом леса, особенно при ровном рельефе, близком залегании водоупора и влагоемких почвах, создаются благоприятные для заболачивания условия. Предвестниками заболачивания лесов часто являются зеленые мхи, в частности кукушкин лен. Их сменяют различные виды сфагнового мха - типичного представителя болотных мхов. Старые поколения деревьев постепенно отмирают, на смену им приходит типичная болотная древесная растительность.


Наименьшая (или предельная полевая) влагоемкость показывает количество воды, удерживаемое почвой в практически неподвижном состоянии после обильного полива и просачивания избыточной воды под влиянием силы тяжести. Определение делается в природных условиях. При залегании грунтовых вод глубже 3 м определение показывает «истинную наименьшую влагоемкость», а при более близких грунтовых водах - более высокое содержание, достигающее величины «капиллярной влагоемкости». Глубину грунтовых вод следует указывать при определении.
Влагоемкость, определяемая описанным ниже методом, называется различными исследователями: общая влагоемкость (Качинский, Вадюнина), предельная полевая влагоемкость (Астапов, Розов, Долгов), наименьшая полевая влагоемкость (Березинь, Рыжов, Зимина), полевая влагоемкость (Ревут, Гречин).
Порядок определения наименьшей влагоемкости. Выбирают ровный, типичный для данного поля участок и на нем окружают земляным валиком высотой 30-40 см площадку размером 1,5х1,5 л. Землю для насыпания валиков берут вне площадки, поверхность площадки оберегают от затаптывания. Для ограждения площадки вместо земляных валиков иногда применяют деревянные или железные рамы. Поблизости от площадки закладывают и описывают почвенный разрез, в стенке которого берут образцы почвы по генетическим горизонтам для определения влажности, объемного и удельного веса почвы.
Для промачивания почвы до 1,5 м на каждый квадратный метр площадки надо приготовить 200-300 л на суглинистых или 200 л воды на супесчаных почвах. Во избежание размыва поверхности под струю воды, подаваемой на площадку, необходимо подложить кусок фанеры или слой соломы. Вода подается постепенно, так чтобы не создавать слоя воды на поверхности выше б см.
Когда вся поданная на площадку вода впитается в почву, ее покрывают для предохранения от испарения с поверхности клеенкой или пластиком и толстым слоем соломы (до 0,5 м), которую прижимают сверху землей.
Просачивание излишней воды из первого метра почвы в основном заканчивается на песчаных почвах за 1-2 суток, на суглинистых - 3-5 и глинистых - 5-10 суток. Однако и после этого срока почвенная влага продолжает медленно просачиваться вниз. Поэтому рекомендуют определение наименьшей влагоемкости в три срока - через 1,3 и 10 суток, обозначая их индексами HB1, HB3 и HB10. Для песчаных и супесчаных почв достаточно определить HB1 и HB3.
Почвенные пробы для определения влажности отбирают буром с трех-пяти мест послойно через 10 см. Для этого на площадку кладут доску и, стоя на ней и не снимая покрытия почвы, производят бурение в центральной части площадки 80х80 см. Отверстия скважин после взятия проб плотно забивают почвой.
Наименьшую (предельную полевую) влагоемкость можно определить во всех случаях обильного увлажнения почвы - ранней весной после полного оттаивания почвы и впитывания талых вод или после полива орошаемых участков. После увлажнения выбранную площадку закрывают клеенкой, соломой и через соответствующие интервалы бурят и определяют влажность почвы площадки.
Наименьшая влагоемкость зависит от механического состава - от 20% объема супесчаных до 40% от объема суглинистых и глинистых почв, и несколько уменьшается с глубиной. Наименьшая влагоемкость тяжелой почвы зависит также от сложения, приемов обработки, структурности, внесения извести.
Вычисляют наименьшую влагоемкость послойно для каждых 10 см в процентах от объема почвы, поэтому необходимо определять объемный вес почвы. Если наименьшая влагоемкость составляет 70-80% общей порозности, то это считается благоприятным для сельскохозяйственных культур, при 80-90% - посредственным, а свыше 90% - неудовлетворительным из-за недостаточного содержания воздуха.

Влагоёмкость почвы

Влагоёмкость (водоёмкость, водоудерживающая сила, капиллярность почвы) - свойство почвы принимать и задерживать в своих волосных скважинах известное количество капельножидкой воды , не позволяя последней стекать.

Процентное отношение её веса к весу почвы или, соответственно, её объёма к объёму почвы, выраженное в процентах, называется показателем влагоёмкости почвы.

Влагоёмкость почвы - величина, количественно характеризующая водоудерживающую способность почвы ; способность почвы поглощать и удерживать в себе от стекания определённое количество влаги действием капиллярных и сорбционных сил. В зависимости от условий, удерживающих влагу в почве, различают несколько видов влагоёмкости почвы: максимальную адсорбционную , капиллярную, наименьшую и полную. Максимальная адсорбционная влагоёмкость почвы, связанная влага, сорбированная влага, ориентировочная влага - наибольшее количество прочно связанной воды, удерживаемое сорбционными силами. Чем тяжелее гранулометрический состав почвы и выше содержание в ней гумуса , тем больше доля связанной, почти недоступной влаги почве. Капиллярная влагоёмкость почвы - максимальное количество влаги, удерживаемое в почвогрунте над уровнем грунтовых вод капиллярными (менисковыми) силами. Зависит от мощности слоя, в котором она определяется, и его удалённости от зеркала грунтовых вод. Чем больше мощность слоя и меньше его удаление от зеркала грунтовых вод, тем выше капиллярная влагоёмкость почвы. При равном удалении от зеркала её величина обусловлена общей и капиллярной пористостью , а также плотностью почвы. С капиллярной влагоёмкостью почвы связана капиллярная кайма (слой подпёртой влаги между уровнем грунтовых вод и верхней границей фронта смачивания почвы). Капиллярная влагоёмкость почвы характеризует культурное состояние почвы. Чем почва менее оструктурена, тем больше в ней происходит капиллярный подъём влаги, её физическое испарение и, зачастую, накопление в верхней части легкорастворимых, в т.ч. и вредных для растений солей. Наименьшая - полевая влагоёмкость почвы - кол-во воды, фактически удерживаемое почвой в природных условиях в состоянии равновесия, когда устранено испарение и дополнительный приток воды. Эта величина зависит от гранулометрического, минералогического и химического состава почвы, ее плотности и пористости. Применяется при расчёте поливных норм. Полная влагоёмкость почвы, водовместимость почвы - содержание влаги в почве при условии полного заполнения всех пор водой. При полной влагоёмкость почвы влага, находившаяся в крупных промежутках между частицами почвы, непосредственно удерживается зеркалом воды или водоупорным слоем. Водовместимость почвы рассчитывается по её общей пористости. Значение величины полной влагоёмкости почвы необходимо при подсчете способности водовпитывания без образования поверхностного стока, для определения способности водоотдачи почвы, высоты подъёма грунтовых вод при обильных дождях или орошении.


Wikimedia Foundation . 2010 .

Смотреть что такое "Влагоёмкость почвы" в других словарях:

    влагоёмкость почвы - влагоёмкость почвы, способность почвы поглощать и удерживать влагу. Выражается количеством влаги в процентах от массы или объёма сухой почвы или в мм водного слоя. Зависит от гранулометрического состава и структуры почвы, содержания в ней гумуса … Сельское хозяйство. Большой энциклопедический словарь

    ВЛАГОЁМКОСТЬ ПОЧВЫ - способность почвы поглощать и удерживать влагу. Выражается кол вом влаги в процентах от массы или объёма сухой почвы или в мм водного слоя. Зависит от гранулометрич. состава и структуры почвы, содержания в ней гумуса. Наиб. влагоёмки мощные… … Сельско-хозяйственный энциклопедический словарь

    Способность почвы поглощать и удерживать определённое количество влаги. В. п. выражается в процентах к массе сухой почвы или к её объёму, а также в миллиметрах водного слоя. См. Водный режим почвы …

    ВЛАГОЁМКОСТЬ ПОЧВЫ - величина, количественно характеризующая водоудерживающую способность почвы … Словарь ботанических терминов

    Влагоемкость (водоемкость, водоудерживающая сила или капиллярность почвы) свойство почвы принимать и задерживать в своих волосных скважинах известное количество капельножидкой воды, не позволяя последней стекать. Это волосная, или капиллярная,… … Википедия

    воздухоёмкость почвы - Объём почвенных пор, содержащих воздух, при влажности почвы, соответствующей её влагоёмкости. [Словарь геологических терминов и понятий. Томский Государственный Университет] Тематики геология, геофизика Обобщающие термины почвоведениеэкзогенные… … Справочник технического переводчика

    Профиль пахотной каштановой почвы, Волгоградская область, Россия Почва поверхностный слой литосферы Земли, обладающий плодородием и представляющий собой полифункциональную, гетерогенную, открытую, четырёхфазную (твёрдая, жидкая, газообразная… … Википедия

    Влагоемкость почвы - ВЛАГОЁМКОСТЬ ПОЧВЫ способность почвы поглощать и удерживать влагу. Выражается в количественных показателях (в % влаги к весу почвы или её объему). Экологический энциклопедический словарь. Кишинев: Главная редакция Молдавской советской… … Экологический словарь

    Совокупность всех явлений, определяющих поступление, передвижение, расход и использование растениями почвенной влаги. В. р. п. важнейший фактор почвообразования и почвенного плодородия. Главный источник почвенной влаги атмосферные осадки; … Большая советская энциклопедия

    Болотные торфяные, или торфяно болотные, почвы, группа почвенных типов, формирующихся в условиях избыточного увлажнения атмосферными, застойными пресными или слабопроточными в той или иной степени минерализованными грунтовыми водами. Т. п … Большая советская энциклопедия