Простой емкостной датчик своими руками. Емкостный датчик. Самоделка из модуля для Arduino

Приложение напряжения переменного тока к смежным проводникам способствует дистанционному накапливанию на них положительных и отрицательных зарядов. Они создают вариативное электромагнитное поле, чувствительное ко многим внешним факторам, в первую очередь, к расстоянию между проводниками. Это свойство может использоваться для создания соответствующих емкостных датчиков, которые в состоянии управлять работой различных систем контроля и слежения.

Приложения напряжения разного знака, согласно закону Ампера, вызывает перемещение проводников, на которых находятся электрические частицы. При этом возникает переменный ток, который может быть обнаружен. Величина протекающего тока определяется емкостью, которая, в свою очередь, зависит от площади проводников и расстояния между ними. Более крупные и более близкие объекты вызывают больший ток, чем более мелкие и более отдаленные.

Емкость определяется следующими параметрами:

  • Характером не проводящей ток среды-диэлектрика, располагающейся между проводниками.
  • Размерами проводников.
  • Силой тока.

Пара таких поверхностей образует обкладки простейшего конденсатора, емкость которого прямо пропорциональна площади и диэлектрической проницаемости рабочей среды, и обратно пропорциональна расстоянию между обкладками. При постоянстве размеров обкладок и состава рабочей среды между ними любое изменение емкости будет являться результатом изменения расстояния между двумя объектами: зондом (датчиком) и отслеживаемой целью. Достаточно только преобразовать изменения емкости в значения сфокусированного электрического напряжения, которое будет управлять дальнейшими действиями прибора. Данные устройства, таким образом, предназначены для определения изменяющегося расстояния между объектами, а также для уточнения характера и качества поверхности измеряемых изделий.

Принцип работы емкостного датчика

Конструктивно такой прибор включает в себя:

  • Источник формирования эталонного напряжения.
  • Первичную цепь – зонд, поверхность и размеры которого определяются целями измерений.
  • Вторичную цепь, формирующую необходимый электрический сигнал.
  • Защитную цепь, обеспечивающую стабильность показаний датчика независимо от внешних возмущающих факторов.
  • Электронный усилитель, драйвер которого формирует сильный управляющий сигнал на исполнительные элементы, и обеспечивает точность срабатывания.

Емкостные датчики подразделяются на одно- и многоканальные. В последнем случае устройство может включать в себя несколько вышеописанных схем с разной формой зондов.

Драйвер электроники может быть настроен как ведущий или ведомый. В первом варианте он обеспечивает синхронизацию управляющих сигналов, поэтому используется преимущественно в многоканальных системах. Все приборы являются сенсорными, реагирующими исключительно на бесконтактные параметры.

Основными характеристиками рассматриваемых устройств считаются:

  • Размеры и характер цели – объекта зондирования. В частности, создаваемое ею электрическое поле должно иметь форму конуса, для которого габаритные размеры должны минимум на 30% превышать соответствующие размеры первичной цепи;
  • Диапазон измерений. Максимальный зазор, при котором показания устройства дают требуемую точность, составляют около 40% от полезной площади первичной цепи;
  • Точность измерений. Калибровка показаний обычно уменьшает диапазон, но повышает точность. Поэтому, чем меньше датчик по размерам, тем ближе он должен быть установлен к контролируемому объекту.

Характеристики датчиков не зависят от материала объекта, а также его толщины

Как конденсатор превращается в датчик

В данном случае причина и следствие меняются местами. Когда на проводник подается напряжение, электрическое поле образуется у каждой поверхности. В емкостном датчике измерительное напряжение подается на чувствительную зону зонда, причём для точных измерений электрическое поле от зондируемой области должно содержаться именно в пространстве между зондом и целью.

В отличие от обычного конденсатора, при работе емкостных датчиков электрическое поле может распространяться на другие предметы (или на отдельные их области). Результатом станет то, что система будет распознавать такое составное поле как несколько целей. Чтобы этого не произошло, задняя и боковые стороны чувствительной области окружают другим проводником, который поддерживается под тем же напряжением, что и сама чувствительная область.

При подаче эталонного напряжения питания, отдельная цепь подает точно такое же напряжение на защиту датчика. При отсутствии разницы в значениях напряжений между зоной чувствительности и защитной зоной, электрическое поле между ними отсутствует. Таким образом, исходный сигнал может исходить только от незащищенного фронта первичной цепи.

В отличие от конденсатора, на действие емкостного датчика будет влиять плотность материала объекта, поскольку при этом нарушается однородность создаваемого электрического поля.

Проблемы измерения

Для объектов сложной конфигурации достижение требующейся точности возможно при соблюдении ряда условий. Например, при многоканальном зондировании напряжение возбуждения для каждого зонда должно быть синхронизировано, иначе зонды будут мешать друг другу: один датчик попытается увеличить электрическое поле, в то время как другой будет стремиться уменьшить его, тем самым давая ложные показания. Поэтому существенным ограничивающим условием является требование, чтобы измерения проводились в тех же условиях, в которых был откалиброван датчик на предприятии-изготовителе. Если оценивать сигнал по изменению расстояния между зондом и целью, то все остальные параметры должны иметь постоянные значения.

Указанные сложности преодолеваются с помощью следующих приёмов:

  • Оптимизации размеров измеряемого объекта: чем меньше цель, тем больше вероятность распространения чувствительности поля по сторонам, в результате чего ошибка измерения увеличивается.
  • Проведения калибровки только по мишени с плоскими размерами.
  • Снижением скорости сканирования цели, в результате чего изменение характера поверхности не будет сказываться на итоговых показаниях.
  • Во время калибровки зонд должен располагаться эквидистантно поверхности цели (параллельно – для плоских поверхностей); это важно для датчиков повышенной чувствительности.
  • Состояние внешней среды: большинство емкостных датчиков сенсорного типа устойчиво работают в температурном диапазоне 22…35 0 С: в этом случае погрешности минимал
    ьны, и не превышают 0,5 % от полной измерительной шкалы.

Тем не менее, есть проблемы, которые устранить невозможно. К их числу относится фактор теплового расширения/сужения материала, как датчика, так и контролируемого объекта. Второй фактор – электрический шум датчика, который вызывается дрейфом напряжения драйвера устройства.

Блок-диаграмма работы

Не являясь прямонаправленным, емкостной датчик измеряет некоторую емкость от объектов, которые постоянно присутствуют в окружающей среде. Поэтому неизвестные объекты обнаруживаются им как увеличение этой фоновой емкости. Она значительно больше, чем емкость объекта, и постоянно изменяется по величине. Поэтому рассматриваемые устройства используются для обнаружения изменений в окружающей среде, а не для обнаружения абсолютного присутствия или отсутствия неизвестного объекта.

При приближении цели к зонду величина электрического заряда или емкости изменяется, что и фиксируется электронной частью датчика. Результат может выводиться на экран или сенсорную панель.

Для производства измерения прибор подключается к печатной плате с сенсорным контроллером. Сенсоры оснащаются управляющими кнопками. Которыми можно включать в работу несколько зондов одновременно.

Сенсорные экраны используют датчики с электродами, расположенными в ряды и столбцы. Они находятся либо на противоположных сторонах основной панели, либо на отдельных панелях, которые разделены между собой диэлектрическими элементами. Контроллер циклически переключается между различными зондами, чтобы сначала определить, к какой строке касаются (направление Y), а затем к какому столбцу (направление X). Зонды часто изготавливаются из прозрачного пластика, что повышает информативность результата измерения.

Использование LC-фильтров

Специализированный аналоговый интерфейс преобразует сигнал от емкостного датчика в цифровое значение, пригодное для дальнейшей обработки. При этом периодически измеряется выходной сигнал датчика и генерируется сигнал возбуждения для зарядки пластины датчика. Частота дискретизации на выходе датчика относительно низкая — менее 500 выборок в секунду, но разрешение аналого-цифрового преобразования необходимо для захвата небольших различий в емкости.

В емкостном измерительном устройстве ступенчатая форма волны возбуждения заряжает электрод датчика. Впоследствии заряд передается в цепь и измеряется аналого-цифровым преобразователем.

Одной из проблем емкостного зондирования (как уже указывалось) является наличие постороннего шума. Эффективным способом повышения помехоустойчивости является модификация датчика путем подключения чувствительного к частоте компонента. В дополнение к элементу переменного конденсатора к датчику добавляются дополнительный конденсатор и индуктор для формирования резонансного контура. Узкополосный отклик позволяет ему подавлять электрический шум. При простоте LC- контура, его наличие обеспечивает ряд эксплуатационных преимуществ. Во-первых, благодаря присущим узкополосным характеристикам LC-резонатор обеспечивает отличную невосприимчивость к электромагнитным помехам. Во-вторых, если известен диапазон частот, где существует шум, то смещение рабочей частоты датчика может отфильтровать эти источники шума без использования внешних схем.

LC-фильтры чаще применяют в многоканальных датчиках

Сферы применения

Данные устройства используются в следующих целях:

  • Для обнаружения пластмасс и других изоляторов.
  • В системах сигнализации, при установлении факта перемещений по контролируемой территории.
  • Как компонент охранных устройств автомобилей.
  • Для определения чистоты поверхности материалов после механической обработки.
  • С целью определения уровня жидких или газообразных рабочих сред в закрытых резервуарах.
  • При установке систем автоматического включения/выключения светильников.

Во всех случаях емкостные датчики подлежат обязательной калибровке в заводских или иных специализированных условиях.

Схемы для изготовления своими руками

Для организации сенсорного управления емкостной датчик легко создать на основе, конденсатора и пары резисторов. При касании к проводам, происходит накапливание электрического заряда, регулируя величину которого, можно изменять время зарядки/разрядки. Такую схему можно применить для управления настольной лампой или иным светильником. В схеме должен присутствовать электронный компаратор, который будет сравнивать время зарядки конденсатора с эталонным (пороговым) значением, и выдавать соответствующий управляющий сигнал.

Электронные схемы с сенсорным контролем более интерактивны для пользователя, чем традиционные, поэтому могут эффективно применяться с целью переключения питания. Емкость конденсатора определяет уровень чувствительности: при повышении емкости чувствительность увеличивается, но для питания устройства потребуется больше мощности и меньшее время срабатывания. Для индикации можно применить обычный светодиод.

Сегодня никого не удивишь различными по назначению и эффективности электронными устройствами предупреждения, которые оповещают или включают охранную сигнализацию задолго до непосредственного контакта нежелательного «гостя» с охраняемым рубежом (территорией). Многие из таких узлов, описанных в литературе, на мой взгляд, интересны, но слишком сложные.

В противовес им предлагается простая бесконтактного емкостного датчика (Рис. 4.11), собрать которую в силах начинающий радиолюбитель. Устройство имеет многочисленные достоинства, одно из которых (высокая чувствительность по входу) используется для предупреждения о приближении какого-либо одушевленного объекта (например, человека) к сенсору Е1.

Практическое применение узла трудно переоценить. В авторском варианте устройство смонтировано рядом с дверной коробкой многоквартирного жилого дома. Входная дверь - металлическая. Громкость сигнала 34, излучаемого капсюлем ΗΑ1, достаточна, чтобы услышать его на закрытой лоджии, и сопоставима с громкостью квартирного звонка.

Источник питания - стабилизированный, напряжением 9…15 В, с хорошей фильтрацией напряжения пульсаций по выходу. Ток потребления ничтожно мал в режиме ожидания (несколько мкА) и увеличивается до 22…28 мА при активной работе излучателя НА1. Бестранс- форматорный источник применять нельзя из-за возможности поражения электрическим током.

Все это следует учитывать при изготовлении узла. Однако при правильном подключении можно создать важную и стабильную часть охранной сигнализации, обеспечивающей безопасность жилища и предупреждающей хозяев о нештатной ситуации еще до ее возникновения. Готовое устройство показано на Рис. 4.12.

Рис. 4.12. Устройство с автомобильной антенной в виде емкостного датчика

Возможно, при других вариантах сенсоров и антенн узел проявит себя в ином качестве. Если экспериментировать с длиной экранирующего кабеля, длиной и площадью сенсора-антенны Е1 и напряжением питания узла, не исключено, что потребуется скорректировать НА1. Может быть заменен аналогичным капсюлем со встроенным генератором 34 и рабочим током не более 50 мА, например: FMQ-2015B, КРХ-1212В и аналогичными.

Благодаря применению капсюля со встроенным генератором проявляется интересный эффект: при приближении человека к сенсору-антенне Е1 звук капсюля монотонный, а при удалении (или приближении человека на расстояние около 1,5 м от Е1) капсюль издает стабильный прерывистый звук в соответствии с изменением уровня потенциала на выходе элемента DD1.2.

Если в качестве НА1 применить капсюль со встроенным генератором прерываний 34, например KPI-4332-12, звук будет напоминать сирену при относительно большом расстоянии человека от сенсора-антенны и стабильный прерывистый сигнал при максимальном приближении.

Относительным недостатком устройства можно считать отсутствие избирательности «свой/чужой», так как узел сигнализирует о приближении к Е1 любого лица, в том числе вышедшего «за булкой хлеба» хозяина квартиры. Основа работы узла - электрические наводки и изменение емкости. Такой узел эффективно работает только в больших жилых массивах с развитой сетью электрических коммуникаций.

Возможно, что такой прибор будет бесполезен в лесу, в поле - везде, где нет электрических коммуникаций осветительной сети 220 В. Такова особенность устройства.

Экспериментируя с данным узлом и микросхемой (даже в штатном ее включении), можно получить бесценный опыт и реальные, простые в повторении, но оригинальные по сути и функциональным особенностям электронные устройства.

Элементы сборки

Монтаж элементов выполняется на плате из стеклотекстолита. Корпус для устройства может быть из любого диэлектрического материала.

Для контроля включения питания устройство может быть снабжено индикаторным светодиодом, который подключается параллельно источнику питания.

Здесь же я отдельно вынес такой важный практический вопрос, как подключение индуктивных датчиков с транзисторным выходом, которые в современном промышленном оборудовании – повсеместно. Кроме того, приведены реальные инструкции к датчикам и ссылки на примеры.

Принцип активации (работы) датчиков при этом может быть любым – индуктивные (приближения), оптические (фотоэлектрические), и т.д.

В первой части были описаны возможные варианты выходов датчиков. По подключению датчиков с контактами (релейный выход) проблем возникнуть не должно. А по транзисторным и с подключением к контроллеру не всё так просто.

Схемы подключения датчиков PNP и NPN

Отличие PNP и NPN датчиков в том, что они коммутируют разные полюсы источника питания. PNP (от слова “Positive”) коммутирует положительный выход источника питания, NPN – отрицательный.

Ниже для примера даны схемы подключения датчиков с транзисторным выходом. Нагрузка – как правило, это вход контроллера.


Подписывайтесь! Будет интересно.


Датчика. Нагрузка (Load) постоянно подключена к “минусу” (0V), подача дискретной “1” (+V) коммутируется транзистором. НО или НЗ датчик – зависит от схемы управления (Main circuit)

Датчика. Нагрузка (Load) постоянно подключена к “плюсу” (+V). Здесь активный уровень (дискретный “1”) на выходе датчика – низкий (0V), при этом на нагрузку подается питание через открывшийся транзистор.

Призываю всех не путаться, работа этих схем будет подробно расписана далее.

На схемах ниже показано в принципе то же самое. Акцент уделён на отличия в схемах PNP и NPN выходов.

Схемы подключения NPN и PNP выходов датчиков

На левом рисунке – датчик с выходным транзистором NPN . Коммутируется общий провод, который в данном случае – отрицательный провод источника питания.

Справа – случай с транзистором PNP на выходе. Этот случай – наиболее частый, так как в современной электронике принято отрицательный провод источника питания делать общим, а входы контроллеров и других регистрирующих устройств активировать положительным потенциалом.

Как проверить индуктивный датчик?

Для этого нужно подать на него питание, то есть подключить его в схему. Затем – активировать (инициировать) его. При активации будет загораться индикатор. Но индикация не гарантирует правильной работы индуктивного датчика. Нужно подключить нагрузку, и измерить напряжение на ней, чтобы быть уверенным на 100%.

Замена датчиков

Как я уже писал, есть принципиально 4 вида датчиков с транзисторным выходом, которые подразделяются по внутреннему устройству и схеме включения:

  • PNP NO
  • PNP NC
  • NPN NO
  • NPN NC

Все эти типы датчиков можно заменить друг на друга, т.е. они взаимозаменяемы.

Это реализуется такими способами:

  • Переделка устройства инициации – механически меняется конструкция.
  • Изменение имеющейся схемы включения датчика.
  • Переключение типа выхода датчика (если имеются такие переключатели на корпусе датчика).
  • Перепрограммирование программы – изменение активного уровня данного входа, изменение алгоритма программы.

Ниже приведён пример, как можно заменить датчик PNP на NPN, изменив схему подключения:

PNP-NPN схемы взаимозаменяемости. Слева – исходная схема, справа – переделанная.

Понять работу этих схем поможет осознание того факта, что транзистор – это ключевой элемент, который можно представить обычными контактами реле (примеры – ниже, в обозначениях).

А что там свежего в группе ВК СамЭлектрик.ру ?

Подписывайся, и читай статью дальше:

Итак, схема слева. Предположим, что тип датчика – НО. Тогда (независимо от типа транзистора на выходе), когда датчик не активен, его выходные “контакты” разомкнуты, и ток через них не протекает. Когда датчик активен, контакты замкнуты, со всеми вытекающими последствиями. Точнее, с протекающим током через эти контакты)). Протекающий ток создает падение напряжения на нагрузке.

Внутренняя нагрузка показана пунктиром неспроста. Этот резистор существует, но его наличие не гарантирует стабильную работу датчика, датчик должен быть подключен к входу контроллера или другой нагрузке. Сопротивление этого входа и является основной нагрузкой.

Если внутренней нагрузки в датчике нет, и коллектор “висит в воздухе”, то это называют “схема с открытым коллектором”. Эта схема работает ТОЛЬКО с подключенной нагрузкой.

Так вот, в схеме с PNP выходом при активации напряжение (+V) через открытый транзистор поступает на вход контроллера, и он активизируется. Как того же добиться с выходом NPN?

Бывают ситуации, когда нужного датчика нет под рукой, а станок должен работать “прям щас”.

Смотрим на изменения в схеме справа. Прежде всего, обеспечен режим работы выходного транзистора датчика. Для этого в схему добавлен дополнительный резистор, его сопротивление обычно порядка 5,1 – 10 кОм. Теперь, когда датчик не активен, через дополнительный резистор напряжение (+V) поступает на вход контроллера, и вход контроллера активизируется. Когда датчик активен – на входе контроллера дискретный “0”, поскольку вход контроллера шунтируется открытым NPN транзистором, и почти весь ток дополнительного резистора проходит через этот транзистор.

В данном случае происходит перефазировка работы датчика. Зато датчик работает в режиме, и контроллер получает информацию. В большинстве случаев этого достаточно. Например, в режиме подсчета импульсов – тахометр, или количество заготовок.

Да, не совсем то, что мы хотели, и схемы взаимозаменяемости npn и pnp датчиков не всегда приемлемы.

Как добиться полного функционала? Способ 1 – механически сдвинуть либо переделать металлическую пластинку (активатор). Либо световой промежуток, если речь идёт об оптическом датчике. Способ 2 – перепрограммировать вход контроллера чтобы дискретный “0” был активным состоянием контроллера, а “1” – пассивным. Если под рукой есть ноутбук, то второй способ и быстрее, и проще.

Условное обозначение датчика приближения

На принципиальных схемах индуктивные датчики (датчики приближения) обозначают по разному. Но главное – присутствует квадрат, повёрнутый на 45° и две вертикальные линии в нём. Как на схемах, изображённых ниже.

НО НЗ датчики. Принципиальные схемы.

На верхней схеме – нормально открытый (НО) контакт (условно обозначен PNP транзистор). Вторая схема – нормально закрытый, и третья схема – оба контакта в одном корпусе.

Цветовая маркировка выводов датчиков

Существует стандартная система маркировки датчиков. Все производители в настоящее время придерживаются её.

Однако, нелишне перед монтажом убедиться в правильности подключения, обратившись к руководству (инструкции) по подключению. Кроме того, как правило, цвета проводов указаны на самом датчике, если позволяет его размер.

Вот эта маркировка.

  • Синий (Blue) – Минус питания
  • Коричневый (Brown) – Плюс
  • Чёрный (Black) – Выход
  • Белый (White) – второй выход, или вход управления, надо смотреть инструкцию.

Система обозначений индуктивных датчиков

Тип датчика обозначается цифро-буквенным кодом, в котором зашифрованы основные параметры датчика. Ниже приведена система маркировки популярных датчиков Autonics.

Скачать инструкции и руководства на некоторые типы индуктивных датчиков:
/ Схема включения датчиков по схемам PNP и NPN в программе Splan/ Исходный файл., rar, 2.18 kB, скачан: 2294 раз./

Реальные датчики

Датчики купить проблематично, товар специфический, и в магазинах электрики такие не продают. Как вариант, их можно купить в Китае, на АлиЭкспрессе.

А вот какие я встречаю в своей работе.

Всем спасибо за внимание, жду вопросов по подключению датчиков в комментариях!

Несколько схем датчиков

В январе 2007 года издательство "Наука и Техника" выпустило книгу автора А.П.Кашкарова "Электронные датчики". На этой страничке хочу познакомить Вас с некоторыми из конструкций.

Очень хочется предупредить - данные схемы я НЕ собирал - работоспособность их полностью зависит от "порядочности" г-на Кашкарова!

В начале рассмотрим схемы с применением микросхемы К561ТЛ1. Первая схема - емкостное реле:

Микросхема К561ТЛ1 (зарубежный аналог CD4093B) - одна из самых популярных цифровых микросхем этой серии. Микросхема содержит 4 элемента 2И-НЕ с передаточной характеристикой триггера Шмита (имеет определенный гистерезис).

Данное устройство имеет высокую чувствительность, что позволяет использовать его в охранных устройствах, а также в устройствах, предупреждающих о небезопасном нахождении человека в опасной зоне (например в распиловочных станках). Принцип устройства основан на изменении емкости между штырем антенны (используется стандартная автомобильная антенна) и полом. По утверждению автора, данная схема срабатывает при приближении человека среднего размера на расстояние около 1,5 метров. В качестве нагрузки транзистора может использоваться, например, электромагнитное реле с током срабатывания не более 50 миллиампер, которое своими контактами включает исполнительное устройство (сирену и проч.). Конденсатор С1 служит для снижения вероятности срабатывания устройства от помех.

Следующее устройство - датчик влажности:

Особенностью схемы является применение в качестве датчика переменного конденсатора С2 типа 1КЛВМ-1 с воздушным диэлектриком. Если воздух сухой - сопротивление между пластинами конденсатора составляет более 10 Гигаом, а уже при небольшой влажности сопротивление уменьшается. По сути этот конденсатор представляет собой высокоомный резистор с изменяющимся в зависимости от внешних условий абсорбированной атмосферной влажности сопротивлением. При сухом климате сопротивление датчика велико, и на выходе элемента D1/1 присутствует низкий уровень напряжения. при увеличении влажности сопротивление датчика уменьшается, возникает генерация импульсов, на выходе схемы присутствуют короткие импульсы. При увеличении влажности частота генерации импульсов увеличивается. В определенный момент влажности генератор на элементе D1/1 превращается в генератор импульсов. на выходе устройства появляется непрерывный сигнал.

Схема сенсорного датчика показана ниже:

Принцип действия этого устройства заключается в реагировании на "наводки" в теле человека или животного от различных электрических устройств. Чувствительность устройства очень велика - оно реагирует даже на прикосновение к пластине Е1 человека в матерчатых перчатках. При первом прикосновении устройство включается, при втором - выключается. Конденсатор С1 служит для защиты от помех и его в отдельном случае может и не быть...

Следующее устройство - индикатор влажности почвы. Это устройство может быть использовано, например, для автоматизации полива теплицы:


Устройство, на мой взгляд, весьма оригинально. Датчиком служит катушка индуктивности L1, закопанная в почву на глубину 35-50 сантиметров.
Транзистор Т2 и катушка индуктивности совместно с конденсаторами С5 и С6 образуют автогенератор на частоту около 16 килогерц. При сухой почве амплитуда импульсов на коллекторе транзистора VT2 равна 3 вольтам. Увеличение влажности почвы приводит к понижению амплитуды этих импульсов. Реле включено. При некотором значении влажности генерация срывается, что приводит к выключению реле. Реле своими контактами выключает, например, насос или электромагнитный вентиль в цепи полива.
О деталях: Самой ответственной частью схемы является катушка. Эта катушка наматывается на отрезок пластмассовой трубы, диаметром 100 , длиной 300 миллиметров и содержит 250 витков, провода ПЭВ, диаметром 1 миллиметр. Намотка - виток к витку. Снаружи обмотка изолируется двумя - тремя слоями ПХВ изоляционной ленты. Транзисторы можно заменить на КТ315. Конденсаторы - типа КМ. Диоды VD1-VD3 - типа КД521 - КД522.
Вся конструкция питается от стабилизированного источника, напряжением 12 вольт. Ток потребления схемой равен (в режимах "влажно-сухо") 20-50 миллиампер.
Электронная схема собирается в небольшой герметичной коробке. Для возможности регулировки напротив движка R5 следует предусмотреть отверстие, которое после настройки также герметично закрывается. Для питания использован маломощный трансформатор с выпрямителем и стабилизатором на КР142ЕН8Б. Реле должно нормально срабатывать при токе не более 30 миллиампер и напряжении 8-10 вольт. Для примера - можно применить РЭС10, паспорт 303. Для питания насоса контакты этого реле непригодны. В качестве промежуточного реле можно использовать автомобильное. Контакты такого реле выдерживают ток не менее 10 ампер. Можно применить и реле типа КУЦ от цветных телевизоров. Оба из рекомендованных реле имеют обмотку на 12 вольт и их можно включать до микросхемы стабилизатора (после выпрямителя и сглаживающего конденсатора), либо после стабилизатора (но тогда микросхему стабилизатора следует установить на небольшой теплоотвод). Также на корпусе следует установить два герметичных разъема (например типа РША). Один разъем используется для подключения сети и исполнительного устройства (насос), другой - для подключения катушки.
Настройка схемы сводится к регулированию чувствительности устройства при помощи переменного резистора R5. Окончательная настройка производится на месте работы устройства более точной подстройкой резистора. Следует иметь в виду, что данное устройство несколько изменяет порог включения при изменении температуры почвы (но это не очень существенно, поскольку на глубине в 35-50 сантиметров температура почвы изменяется незначительно).
Весной у владельцев овощных ям и гаражей появляется еще одна забота - талые воды. Если вовремя не откачать воду - овощи приходят в негодность... Можно процедуру откачки воды поручить автоматике. Схема получается простенькой, а сэкономит Вам множество времени и нервов (эта схема не из книжки! ) :



Схема автоматической "водооткачки" работает на принципе электропроводности воды. Основным элементом контроля уровня является блок из трех пластин из нержавеющей стали. Пластины 1 и 2 имеют одинаковую длину, пластина 3 - датчик верхнего уровня воды. Пока уровень воды ниже уровня 3 пластины - на входе логического элемента D1 уровень логической еденицы, на выходе элемента уровень логического нуля - транзистор заперт, реле обесточено. При увеличении уровня воды датчик 3 через воду соединяется с общим проводом схемы (пластина 1) - на входе элемента уровень логического нуля, на выходе элемента - уровень логической еденицы - транзистор открывается - реле своими контактами включает насос. Одновременно с насосом на вход схемы подключается пластина 2 датчика. Эта пластина является датчиком нижнего уровня воды. Насос будет работать до тех пор, пока уровень воды не опустится ниже уровня пластин. После этого насос отключается и схема переходит в дежурный режим...
В схеме можно применить практически любые логические элементы КМОП технологии серий 176, 561,564. Реле РЭС22 используется на напряжение срабатывания 10-12 вольт. Данное реле имеет довольно мощные контакты, что позволяет непосредственно управлять насосом типа "Водолей" мощностью до 250 ватт. Для увеличения надежности работы полезно свободные группы контактов реле (их всего четыре) соединить параллельно и параллельно контактам реле включить цепочку из последовательно соединенных резистора на 100 ом (мощностью не менее 2 ватт) и конденсатора на 0,1 микрофарады (с рабочим напряжением не менее 400 вольт). Эта цепочка служит для уменьшения искрения на контактах в моменты коммутации. Если у Вас насос большей мощности - придется применить дополнительное промежуточное реле с контактами большей мощности (например пускатель ПМЕ 100 - 200...), обмотку которого (обычно на 220 вольт) коммутировать при помощи реле РЭС22. В этом случае обычно хватает одной пары контактов и искрогасящую цепочку параллельно контактам реле можно не ставить. Трансформатор питания использован на 12 вольт (был готовый) с мощностью около 5 ватт. При самостоятельном изготовлении следует учитывать тот факт что трансформатор будет работать непрерывно, поэтому лучше увеличить (для надежности) на 15-20 процентов количество витков первичной и вторичной обмоток по сравнению с расчетными. Использовать Китайские трансформаторы я бы Вам не советовал - при работе они очень сильно греются - может произойти пожар, либо трансформатор попросту сгорит, а Вы будете уверены в надежности работы схемы и перестанете наведываться в гараж... Результат - овощи испорчены...
Данное устройство эксплуатируется автором на протяжении 5 лет и показало высокую надежность. Соседи по гаражному кооперативу тоже высоко оценили этот "девайс" - уровень воды в их ямах также значительно понизился...

Можно подобное устройство изготовить и без микросхемы:



Реле в данной конструкции используется типа КУЦ (от цветных телевизоров). Этот тип реле имеет две пары замыкающих контактов. Одна пара используется для переключения пластин датчика, другая - для управления насосом. Следует иметь в виду, что реле типа КУЦ нежелательно использовать совместно с микросхемой - могут появиться ложные срабатывания от наводок!

Схема каких либо особенностей не имеет. Возможно, во время настройки придется подобрать резистор R2 в цепи смещения транзистора VT2, добиваясь четкого срабатывания реле при контакте датчика с водой.


На оставшихся элементах микросхемы можно собрать еще одно полезное устройство - имитатор охранной сигнализации:



Устройство предназначено для имитации системы охраны гаража. Для обеспечения бесперебойности работы схема снабжена автономным питанием из батареи аккумуляторов с напряжением 5 вольт. Для экономичности устройства в целом - служит фоторезистор R2. В темное время суток на фоторезистор свет не попадает - сопротивление его велико - на входе элемента присутствует напряжение логической еденицы - генератор вырабатывает импульсы. Светодиод - "моргает". В светлое время суток сопротивление фоторезистора уменьшается, что приводит к уменьшению напряжения на выводе 10 микросхемы до уровня логического нуля - генератор перестает возбуждаться. Частота импульсов зависит от номиналов конденсатора С1 и резистора R2. В качестве резервного источника использована батарея из 4 аккумуляторов типа КНГ-1,5. Емкости аккумуляторной батареи хватает для непрерывной работы схемы примерно на 20-30 суток (при пропадании сетевого напряжения).
Настройка сводится к подбору с помощью сопротивления резистора R1 уровня чувствительности схемы. Резистором R2 можно изменять частоту генератора.
Данное устройство относится к так называемому "пассивному" устройству защиты, но оно реально работает! Эксплуатация "моргасика" в течении более 5 лет показала его довольно высокую эффективность. За это время не было зафиксировано ни одной попытки вскрытия гаража (у соседей такие случаи бывали). Понятно, что серьезного жулика подобным устройством не напугаешь - (но где они, серьезные жулики - так, одна шпана...).

Датчики движения – невероятно удобная вещь, которая позволяет управлять светом в комнате или контролировать открытие и закрытие дверей, а также может оповестить вас о нежелательных гостях. В этой статье мы расскажем, как сделать датчик движения своими руками в домашних условиях и рассмотрим сферу возможного применения данных устройств.

Кратко о датчиках

Один из самых простых видов датчиков — концевой выключатель или самовозвратная кнопка (без фиксации).

Она устанавливается у двери и реагирует на ее открытие и закрытие. С помощью нехитрой схемы данный аппарат включает свет в холодильнике. Ей можно оснастить кладовку или тамбур прихожей, дверь в подъезде, дежурную светодиодную подсветку, использовать данный выключатель как сигнализацию, которая оповестит об открытии или закрытии двери. Недостатками конструкции могут являться сложности в установке, и порой непрезентабельный внешний вид.

Аппараты, на основе и магнита, можно заметить на дверях и окнах охраняемых объектов. Их принцип работы очень похож на работу кнопки. Геркон может размыкать или соединять контакты при поднесении к нему обычного магнита. Таким образом, сам геркон устанавливается на дверной проем, а магнит вешается на дверь. Такая конструкция аккуратно выглядит и используется чаще, чем обычная кнопка. Недостаток устройств в узко специализированном применении. Для контроля открытых территорий, площадей, проходов они не годны.

Для открытых проходов существуют устройства, реагирующие на изменения в окружающей среде. К ним относятся фотореле, емкостные (датчики поля), тепловые (PIR), звуковые реле. Для фиксации пересечения определенного участка, контроля препятствия, наличия движения какого-либо объекта в зоне перекрытия, используют фото или звуковые эхо устройства.

Принцип работы таких датчиков основан на формировании импульса и его фиксации после отражения от объекта. При попадании в такую зону предмета, изменяется характеристика отраженного сигнала, и детектор формирует сигнал управления на выходе.

Для наглядности представлена принципиальная схема работы фотореле и звукового реле:

В качестве передающего устройства в оптических датчиках используются инфракрасные светодиоды, а в качестве приемника – фототранзисторы. Звуковые датчики работают в ультразвуковом диапазоне, поэтому их работа для нашего уха кажется бесшумной, однако каждый из них содержит маленький излучатель и улавливатель.

К примеру, замечательно снабдить детектором движения зеркало с подсветкой. Включение освещения будет происходить только в тот момент, когда человек будет находиться непосредственно возле него. Не желаете сделать такую самостоятельно?

Схемы сборки

Микроволновый

Для контроля открытых пространств и контроля наличия объектов в нужной зоне, существует емкостное реле. Принцип действия данного устройства заключается в измерении величины поглощения радиоволн. Каждый наблюдал или был участником этого эффекта, когда, приближаясь к работающему радиоприемнику, частота на которой он работает, сбивалась и появлялись помехи.

Поговорим о том, как сделать датчик движения микроволнового типа. Сердцем данного детектора является радио микроволновой генератор и специальная антенна.

На данной принципиальной схеме представлен простой способ сделать микроволновый датчик движения. Транзистор VT1 является высокочастотным генератором и по совместительству радио приемником. Детекторный диод выпрямляет напряжение, подавая смещение на базу транзистора VT2. Обмотки трансформатора Т1 настроены на разную частоту. В начальном состоянии, когда на антенну не воздействует внешняя емкость, амплитуды сигналов взаимно компенсируются и на детекторе VD1 нет напряжения.При изменении частоты, их амплитуды складываются и детектируются диодом. Транзистор VT2 начинает открываться. В качестве компаратора для четкой отработки состояний «включено» и «выключено», используется тиристор VS1, который управляет силовым реле на 12 Вольт.

Ниже предоставлена действенная схема реле присутствия на доступных компонентах, которая поможет собрать детектор движения своими руками или просто пригодится для ознакомления с устройством.

Тепловой

Тепловой ДД (PIR) самый распространенный сенсорный аппарат в хозяйственном секторе. Это объясняется дешевыми комплектующими, простой схемой сборки, отсутствием дополнительных сложных настроек, широким температурным диапазоном работы.

Готовый аппарат можно купить в любом магазине электротоваров. Часто этим сенсором снабжаются светильники, устройства сигнализации и прочие контроллеры. Однако сейчас мы расскажем, как сделать тепловой датчик движения в домашних условиях. Простая схема для повторения выглядит следующим образом:

Специальный тепловой датчик В1 и фото элемент VD1 составляют автоматизированный комплекс управления освещением. Устройство начинает работать только после наступления сумерек, порог срабатывания можно выставить резистором R2. Датчик подключает нагрузку при попадании перемещающегося человека в зону контроля. Время встроенного таймера для отключения можно выставить регулятором R5.

Самоделка из модуля для Arduino

Недорогой сенсор можно сделать из специальных готовых плат для радио конструктора. Так можно получить довольно миниатюрное устройство. Для сборки нам понадобятся модуль датчика движения для микроконтроллеров Arduino и модуль одноканального реле.

На каждой плате распаян разъем из трех штырьков, VCC +5 вольт, GND -5 вольт, OUT выход на детекторе и IN вход на плате реле. Для того, чтобы сделать устройство своими руками, необходимо с источника питания подать на платы 5 Вольт (плюс и минус), например, от зарядки для телефонов, а out и in соединить вместе. Соединения можно проводить с помощью разъемов, но надежнее будет все спаять. Можно руководствоваться схемой ниже. Миниатюрный транзистор, как правило, уже встроен в модуль реле, поэтому дополнительно его ставить не нужно.

При перемещении человека модуль подает сигнал на реле, и оно открывается. Обратите внимание, что есть реле высокого и низкого уровня. Его необходимо подбирать исходя из того, какой сигнал выдает датчик на выходе. Готовый детектор можно поместить в корпус и замаскировать в нужном месте. Дополнительно рекомендуем просмотреть видео, в которых наглядно демонстрируются инструкции по сборке самодельных датчиков движения в домашних условиях. Если у вас останутся какие-либо вопросы, вы всегда можете задать их в комментариях.