Рекуператор воздуха: что это? Типы систем рекуперации тепла в системах вентиляции Особенности пластинчатой и роторной конструкций

До недавнего времени приточно-вытяжная вентиляция с рекуператором воздуха использовалась в России довольно редко, пока специалисты не пришли к выводу о том, что такая система - это необходимость. В основе работы вентиляции заложен принцип рекуперации. Так называется процесс, при котором из отработанного воздуха возвращается часть тепла. Покидая помещение, теплый воздух частично нагревает встречный холодный поток в теплообменнике. Таким образом, на улицу выходит полностью «отработанный» воздух, а в помещение попадает не только свежий, но и уже нагретый воздух.

Почему от вытяжной вентиляции старого типа давно пора отказаться

Почему традиционная естественная вытяжная вентиляция, которая долгие годы устанавливалась в частных домах, квартирах и зданиях, - больше не эффективна? Дело в том, что в этом случае через рамы, дверные проемы и щели должно происходить непрерывное проникновение воздуха в помещение, но в случае установки герметичных пластиковых стеклопакетов, приток воздуха сильно сокращается и в результате естественная вытяжная система вентиляции перестает нормально функционировать.
Для того, чтобы в помещениях температура воздуха была комфортной, в зимний период воздух требуется нагревать, на что в нашей стране, владельцем жилья затрачиваются огромные средства, т.к. холода в нашей стране длятся 5-6 месяцев. И хотя отопительный сезон - короче, все равно на обогрев приточного воздуха уходят огромные ресурсы. Однако на этом недостатки естественной вытяжной вентиляции не заканчиваются. С улицы в помещение попадает не только холодный, но и грязный воздух, а также периодически возникают сквозняки. Контролировать объем этих воздушных потоков нет возможности. Получается, что из-за несбалансированной вентиляции на ветер в буквальном смысле слова выбрасываются огромные деньги, потому что люди вынуждены платить за нагрев воздуха, который через пару минут улетает в трубу. Так как цены на энергоносители растут год от года, неудивительно, что вопрос об уменьшении затрат на отопление рано или поздно возникает у каждого бережливого человека, который не хочет за свой счет «отапливать улицу».

Как сберечь тепло в доме

Для сбережения тепла в системе вентиляции, - нагрева приточного холодного воздуха за счет удаляемого из помещения теплого воздуха, предназначены специальные установки-рекуператоры. В приточно-вытяжные вентиляционные установки встраивается кассета, обеспечивающая теплообмен воздуха. Выходя через неё, вытяжной воздух передает тепло стенкам теплообменника, при этом холодный воздух, идущий в помещение, нагревается от стенок. Этот принцип заложен в основу работы пластинчатых и роторных рекуператоров, которые на данный момент завоевали популярность на рынке вентиляционных установок.

Есть ли недостатки у пластинчатых рекуператоров

В устройствах данного типа потоки воздуха как бы разрезаются пластинами. Эти приточно-вытяжные системы, помимо множества преимуществ, о которых пойдет речь дальше, имеют и один недостаток: с той стороны, где выходит вытяжной воздух, на пластинах образуется наледь. Проблема объясняется просто: в результате того, что теплообменная пластина и вытяжной воздух имеют разные температуры, образуется конденсат, который, собственно, и превращается в наледь. Через замерзшие пластины воздух начинает проходить с огромным сопротивлением, и производительность вентиляции резко падает, а процесс рекуперации практически останавливается, до момента полного оттаивания пластин.
Процесс можно сравнить с тем, как если бы из морозильной камеры достали бутылку лимонада. Стекло в миг покрылось бы сначала белой пленкой, а затем - каплями воды. Можно ли бороться с проблемой обмерзания рекуператора? Специалисты нашли выход, установив в системах вентиляции с рекуперацией специальный клапан-байпас. Как только пластины покрываются слоем наледи, байпас открывается, и приточный воздух какое-то время идет в обход кассеты рекуператора, поступая в помещение практически без нагрева. При этом, пластины рекуператора довольно быстро размораживаются за счет удаляемого вытяжного воздуха, а образовавшаяся вода собирается в дренажной ванне. Ванна соединена с дренажной системой, выходящей в канализацию, и весь конденсат сливается туда. Рекуператор снова начинает эффективно работать, а воздухообмен восстанавливается.
Когда кассета размораживается, клапан снова закрывается, однако и тут есть одно «но». Когда воздух не поступает в теплообменник, обходит его, экономия энергии сводится к минимуму. Связано это с тем, что приточный воздух, как правило, кроме пластин теплообменника, догревает встроенный калорифер - точно такой же, какой имеется в простых приточных установках, но значительно меньшей мощности. Как с этим справляться? Можно ли бороться с наледью, чтобы не терять деньги?

Приточно-вытяжные вентиляционные установки с рекуперацией тепла

Производители рекуператоров нашли решение этой серьезной проблемы. Благодаря изобретению новой технологии, влага, что оседает на стенках теплообменника со стороны выходящего воздуха, начинает впитываться в них и переходить на сторону приточного воздуха - увлажняя его. Таким образом, практически вся влага, находящаяся в удаляемом воздухе, попадает обратно в помещение. За счет чего возможен этот процесс? Такого эффекта инженеры добились, создав кассеты из гигроскопичной целлюлозы. Кроме того, многие из гигроскопичной целлюлозы не имеют байпасов и не подключаются к дренажной системе с ванной и водопроводом. Всю влагу утилизируют потоки воздуха, и она остается, практически полностью в помещении. Итак, используя в рекуператоре теплообменник из целлюлозы больше не нужно использовать байпас и направлять воздух в обход пластинам рекуператора.

В итоге эффективность рекуператора удалось поднять до 90%! А это означает, что приточный воздух с улицы будет на 90% нагреваться за счет выходящего воздуха. При этом рекуператоры без проблем могут работать даже на морозе, до -30 градусов Цельсия. Такие установки отлично подходят для жилых помещений, квартир, загородных домов и коттеджей, сохраняя и поддерживая необходимую влажность и воздухообмен зимой и летом, они создают и поддерживают необходимый микроклимат в помещении круглый год, экономя при этом не малые деньги. Однако следует помнить, что рекуператоры с целлюлозными теплообменниками как и все остальные, способны обмерзать, что со временем может привести к выходу из строя теплообменной кассеты. Для того, чтобы полностью исключить возможность обмерзания, необходимо устанавливать защиту от обмерзания. Так же при всех своих положительных качествах рекуператоры с бумажным теплообменником, нельзя использовать для помещений с повышенным содержанием влаги, в частности, для . Для влажных помещений, в том числе и для бассейнов необходимо использовать приточно-вытяжные вентиляционные установки с пластинчатым рекуператором из алюминия.

Схема и принцип работы приточно-вытяжной системы вентиляции с рекуператором

Предположим, что на улице зима и температура воздуха за окном -23 0 С. При включении приточно-вытяжной установки, уличный воздух засасывается установкой при помощи встроенного вентилятора, проходит через фильтр и попадает на теплообменную кассету. Проходя через нее, он нагревается до +14 0 С. Как мы видим, в зимние холода, установка не в состоянии полностью прогреть воздух до комнатной температуры, хотя многим, возможно будет достаточно и такого нагрева, поэтому после рекуператора приточный воздух может идти сразу в помещение, или если в рекуператоре стоит так называемый «догрев воздуха» проходя через него, воздух догревается до +20 0 С и только полностью прогретый попадает в помещение. Догреватель это маломощный калорифер электрический или водяной мощностью 1-2 кВт, который может, если в этом есть необходимость, включаться при низких уличных температурах и догревать воздух до комфортной комнатной температуры. В комплектациях рекуператоров различных производителей, как правило, есть возможность выбора водяного или электрического догревателя. Напротив, комнатный воздух с температурой +18 0 С(+20 0 С) засасываясь из помещения встроенным в установку вентилятором, проходя через теплообменную кассету, охлаждается приточным воздухом и выходит на улицу из рекуператора, имея температуру -15 0 С.

Какая температура воздуха будет после рекуператора зимой и летом

Есть довольно простой способ самим посчитать, какой же температуры будет попадать воздух в помещение после рекуператора. На сколько эффективно будет прогреваться приточный воздух и будет-ли он вообще подогреваться? Что будет происходить с воздухом в рекуператоре летом?

Зима

На картинке видно, что уличный воздух равен 0 0 С, эффективность рекуператора равна 77% при этом, температура воздуха попадающего в помещение равна 15,4 0 С. А на сколько прогреется воздух, если температура на улице будет например -20 0 С? Существует формула расчета приточного воздуха для рекуператора в зависимости от его эффективности, температуры воздуха на улице и в помещении:

t (после рекуператора)=(t (внутри помещения)-t (на улице))xK (КПД рекуператора)+t (на улице)

Для нашего примера получается: 15,4 0 С=(20 0 С-0 0 С)х77%+0 0 С Если температура за окном -20 0 С, в помещении +20 0 С, эффективность рекуператора 77%, то температура воздуха после рекуператора составит: t=((20-(-20))х77%-20=10,8 0 С. Но это конечно теоретический расчет, на практике температура будет немного меньше, около +8 0 С.

Лето

Аналогично рассчитывается температура воздуха после рекуператора летом:

t (после рекуператора)=t (на улице)+(t (внутри помещения)-t (на улице))xK (КПД рекуператора)

Для нашего примера получается: 24,2 0 С=35 0 С+(21 0 С-35 0 С)х77%

Схема и принцип работы приточно-вытяжной системы вентиляции с роторным рекуператором




Принцип действия роторного рекуператора основан на обмене теплом между входящим и выходящим потоком воздуха в системе вентиляции через роторный алюминиевый теплообменник, который вращаясь с различной скоростью, позволяет осуществлять такой процесс с различной интенсивностью.

Какой рекуператор лучше

Сегодня в продаже имеются рекуператоры разных фирм производителей, отличающиеся по многим пунктам: принципу работы, эффективности, надежности, экономии и т.д. Давайте посмотрим на наиболее популярные типы рекуператоров и сравним их преимущества и недостатки.
1. Пластинчатый рекуператор с алюминиевым теплообменником. Цена такого рекуператора достаточно низкая, по сравнению с другими типами рекуператоров, что несомненно является одним из его приемуществ. В устройстве потоки воздуха не смешиваются, их разделяет алюминиевая фольга. Из минусов следует назвать не высокую производительность при низких температурах, т.к. теплообменник периодически обмерзает и должен часто оттаивать. Логично, что затраты на электроэнергию повышаются. Не желательно так же их устанавливать и в жилых помещениях, т.к в зимний период в процессе работы рекуператора, удаляется вся влага из воздуха помещения и требуется его постоянное увлажнение. Основным преимуществом алюминиевых пластинчатых рекуператоров является то, что их можно устанавливать для вентиляции бассейнов.
2. Пластинчатый рекуператор с теплообменником из пластика. Преимущества - те же, что и у предыдущего варианта, однако КПД - выше благодаря свойствам пластмассы.

3. Пластинчатый рекуператор с теплообменником из целлюлозы и одинарной кассетой. Несмотря на то, что потоки воздуха разделяются перегородками из бумаги, влага спокойно пропитывает стенки теплообменника. Важным преимуществом является то, что в помещение обратно попадает и сбереженное тепло и влага. Из-за того, что теплообменник практически не подвержен обмерзанию, не тратится время на его оттаивание, значительно увеличивается эффективность устройства. Если говорить о недостатках, то они - таковы: рекуператоры этого типа нельзя устанавливать в бассейнах, а также в любых других помещениях, где наблюдается избыточная влажность. Помимо этого рекуператор нельзя использовать для осушения. Очень часто, такие .

4. Роторный рекуператор. Отличается высоким КПД, однако этот показатель все же остается ниже, чем если бы использовалась пластинчатая установка с двойной кассетой. Отличительной особенностью является низкое потребление энергии. Что до недостатков, то отметим такие моменты, так как встречные воздушные потоки у роторного рекуператора разделены не идеально, в приточный воздух попадает небольшое количество удаляемого из помещения воздуха (пусть и незначительное). Само устройство стоит довольно дорого, т.к. используется сложная механика. Наконец, роторный рекуператор должен обслуживаться чаще, чем другие приточно-вытяжные установки и его установка во влажных помещениях не желательна.

Рекуператоры для квартир и загородных домов

Mitsubishi Lossney Electrolux EPVS DAIKIN
Sistemair SHUFT

От чего зависит цена на рекуператор

В первую очередь, цена на рекуператор зависит от производительности всей системы вентиляции. Проектировщик-профессионал сможет разработать грамотный проект, удовлетворяющий именно вашим условиям и запросам, от качества которого будет зависеть не только эффективность работы всей системы, но и ваши дальнейшие затраты на её обслуживание. Конечно оборудование можно подобрать и самому, включая и воздуховоды и решетки, но желательно, чтобы обозначенными вопросами занимался специалист. Разработка проекта стоит дополнительных денег и на первый взгляд кому-то подобные расходы покажутся довольно солидными, но если посчитать, сколько денег в результате останется в вашем бюджете благодаря грамотному , то вы удивитесь.
Выбирая самостоятельно рекуператор, первым делом обращайте внимание на цену и обещанное качество. Стоит ли устройство заявленной суммы? Или вы просто переплатите за новинку или бренд? Оборудование стоит недешево и окупается несколько лет, поэтому к выбору устройства следует подходить очень ответственно.
Обязательно проверьте наличие сертификатов на продукцию и узнайте, сколько действует гарантийный срок. Обычно гарантия дается не на рекуператор, а на его составные части. Чем лучше качество узлов, агрегатов и прочих комплектующих - тем дороже обойдется покупка. Надежность системы оценивается по сильным и слабым сторонам товара. Естественного, идеального варианта не предлагает никто, но найти наилучшее решение для конкретного помещения - вполне возможно.

Как выбрать приточно-вытяжную установку с рекуператором

Первым делом задайте продавцу следующие вопросы:
1. Какая фирма выпускает продукцию? Что о ней известно? Сколько лет на рынке? Какие ходят отзывы?
2. Какова производительность системы? Эти данные могут рассчитать специалисты, к которым вы обратитесь за консультацией, в том числе и специалисты нашей компании. Для этого вы должны указать точные параметры помещения, желательно предоставить планировку квартиры, офиса, загородного дома, коттеджа и т.д.
3. Каким будет сопротивление системы воздуховодов потокам воздуха после установки конкретной модели? Эти данные также должны рассчитывать проектировщики для каждого отдельного случая. При расчетах учитываются все диффузоры, изгибы воздуховода и многое другое. Модель и мощность рекуператора подбирается с учетом так называемой «рабочей точки» - соотношения расхода воздуха и сопротивления воздуховодов.
4. К какому классу энергопотребления относится рекуператор? Во сколько обойдется содержание системы? Сколько можно экономить электроэнергии? Это нужно знать для того, чтобы просчитать траты на отопительный сезон.
5. Чему равняется заявленный Коэффициент Полезного Действия установки и реальный? КПД рекуператоров зависит от того, какой будет разница температур в помещении и снаружи. Также на этот показатель влияют такие параметры, как: тип теплообменной кассеты, влажность воздуха, компоновка системы в целом, правильность размещения всех узлов и т.д.
Давайте посмотрим, как может рассчитываться КПД для разных типов рекуператоров.
- Если теплообменник пластинчатого рекуператора изготовлен из бумаги, то КПД составит, в среднем, 60-70%. Установка не промерзает, точнее - это случается крайне редко. Если теплообменник нужно разморозить, то система сама снижает на какое-то время производительность установки.
- Пластинчатый алюминиевый теплообменник демонстрирует высокий КПД - до 63%. А вот рекуператор окажется менее производительным. КПД здесь будет равняться 42-45%. Связано это с тем, что теплообменник должен часто оттаивать. Если же вы хотите устранить обмерзание, то придется использовать гораздо больше электроэнергии.
- Роторный рекуператор показывает высокий КПД в том случае, если обороты ротора регулирует «автоматика», руководствуясь показателями температурных датчиков, которые устанавливаются и в помещении, и на улице. Роторные рекуператоры то же подвержены обмерзанию, в результате чего, снижается КПД так же, как и у пластинчатых рекуператоров, сделанных из алюминия.

В связи с ростом тарифов на первичные энергоресурсы рекуперация становиться как никогда актуальна. В приточно-вытяжных установках с рекуперацией обычно применяются следующие типы рекуператоров:

  • пластинчатый или перекрестно-точный рекуператор;
  • роторный рекуператор;
  • рекуператоры с промежуточным теплоносителем;
  • тепловой насос;
  • рекуператор камерного типа;
  • рекуператор с тепловыми трубами.

Принцип работы

Принцип работы любого рекуператор в приточно-вытяжных установках заключается в следующем. Он обеспечивает теплообмен (в некоторых моделях - и холодообмен, а также влагообмен) между потоками приточного и вытяжного воздуха. Процесс теплообмена может происходить непрерывно – через стенки теплообменника, с помощью хладона или промежуточного теплоносителя. Может теплообмен быть и периодическим, как в роторном и камерном рекуператоре. В результате выбрасываемый вытяжной воздух охлаждается, нагревая тем самым свежий приточный воздух. Процесс холодообмена в отдельных моделях рекуператоров проходит в теплое время года и позволяет снизить энергозатраты на системы кондиционирования воздуха за счет некоторого охлаждения подаваемого в помещение приточного воздуха. Влагообмен идет между потоками вытяжного и приточного воздуха, позволяя поддерживать в помещении комфортную для человека влажность круглогодично, без использования каких либо дополнительных устройств – увлажнителей и других.

Пластинчатый или перекрестно-точный рекуператор.

Теплопроводящие пластины рекуперативной поверхности изготавливают из тонкой металлической (материал – алюминий, медь, нержавеющая сталь) фольги или из ультратонкого картона, пластика, гигроскопичной целлюлозы. Потоки приточного и вытяжного воздуха движутся по множеству небольших каналов, образованных этими теплопроводящими пластинами, по схеме противотока. Контакт и смешивание потоков, их загрязнение практически исключены. В конструкции рекуператора движущихся деталей нет. Коэффициент эффективности 50-80%. В рекуператора из металлической фольги из-за разницы температур потоков воздуха на поверхности пластин может конденсироваться влага. В теплое время года ее необходимо отвести в систему канализации здания по специально оборудованному дренажному трубопроводу. В холодное время есть опасность замерзания этой влаги в рекуператоре и его механического повреждения (разморозки). Кроме того, образовавшийся лед сильно снижает эффективность работы рекуператора. Поэтому рекуператоры с металлическими теплопроводящими пластинами требуют при эксплуатации в холодное время года периодической оттайки потоком теплого вытяжного воздуха или использования дополнительного водяного или электрического воздухонагревателя. При этом приточный воздух или совсем не подается, или подается в помещение в обход рекуператора через дополнительный клапан (байпас). Время оттайки составляет в среднем от 5 до 25 минут. Рекуператор с теплопроводящими пластинами из ультратонкого картона и пластика не подвержен обмерзанию, так как через эти материалы идет и влагообмен, но у него другой недостаток – его нельзя использовать для вентиляции помещений с высокой влажностью с целью их осушения. Пластинчатый рекуператор может устанавливаться в приточно-вытяжную систему как в вертикальном, так и в горизонтальном положении в зависимости от требований к размерам венткамеры. Пластинчатые рекуператоры самые распространенные из-за своей относительной простоты конструкции и дешевизны.



Роторный рекуператор.

Этот тип – второй по степени распространения после пластинчатого. Теплота от одного потока воздуха к другому передается через вращающийся между вытяжной и приточной секциями цилиндрический пустотелый барабан, называемый ротором. Внутренний объем ротора заполнен уложенной туда плотно металлической фольгой или проволокой, которая играет роль вращающейся теплопередающей поверхности. Материал фольги или проволоки тот же, что и у пластинчатого рекуператора - медь, алюминий или нержавеющая сталь. Ротор имеет горизонтальную ось вращения приводного вала, вращаемого электродвигателем с шаговым или инверторным регулированием. С помощью двигателя можно управлять процессом рекуперации. Коэффициент эффективности 75-90%. Эффективность рекуператора зависит от температур потоков, их скорости и частоты вращения ротора. Изменяя частоту вращения ротора, можно менять и эффективность работы. Замерзание влаги в роторе исключено, а вот смешивание потоков, их взаимное загрязнение и передачу запахов полностью исключить нельзя, так как потоки непосредственно контактируют друг с другом. Возможно смешивание до 3%. Роторные рекуператоры не требуют больших затрат электроэнергии, позволяют осушать воздух в помещениях с высокой влажностью. Конструкция роторных рекуператоров является более сложной, чем пластинчатых, а их стоимость и затраты на эксплуатацию более высокими. Тем не менее, приточно-вытяжные установки с роторными рекуператорами являются очень популярными благодаря их высокой эффективности.


Рекуператоры с промежуточным теплоносителем.

Теплоноситель чаще всего вода или водные растворы гликолей. Такой рекуператор состоит из двух теплообменников, соединенных между собой трубопроводами с насосом для циркуляции и арматурой. Один из теплообменников помещен в канал с потоком вытяжного воздуха и получает теплоту от него. Теплота через теплоноситель с помощью насоса и труб переносится в другой теплообменник, расположенный в канале приточного воздуха. Приточный воздух воспринимает это тепло и нагревается. Смешивание потоков в этом случае полностью исключено, но из-за наличия промежуточного теплоносителя коэффициент эффективности этого типа рекуператоров относительно низок и составляет 45-55%. На эффективность можно влиять с помощью насоса, воздействуя на скорость движения теплоносителя. Основное преимущество и отличие рекуператора с промежуточным теплоносителем от рекуператора с тепловой трубой в том, что теплообменники в вытяжной и приточной установках можно располагать на расстоянии друг от друга. Положение для монтажа теплообменников, насоса и трубопроводов может быть как вертикальным, так и горизонтальным.


Тепловой насос.

Относительно недавно появилась интересная разновидность рекуператора с промежуточным теплоносителем – т.н. термодинамический рекуператор, в котором роль жидкостных теплообменников, труб и насоса играет холодильная машина, работающая в режиме теплового насоса. Это своеобразная комбинация рекуператора и теплового насоса. Она состоит из двух хладоновых теплообменников – испарителя-воздухоохладителя и конденсатора, трубопроводов, терморегулирующего вентиля, компрессора и 4-х ходового клапана. Теплообменники размещены в приточном и вытяжном воздуховоде, компрессор необходим для обеспечения циркуляции хладона, а клапан переключает потоки хладагента в зависимости от сезона и позволяет переносить теплоту из вытяжного воздуха в приточный и наоборот. При этом приточно-вытяжная система может состоять из нескольких приточных и одной вытяжной установки большей производительности, объединенных одним холодильным контуром. При этом возможности системы позволяют нескольким приточным установкам работать в разных режимах (нагрев/охлаждение) одновременно. Коэффициент преобразования теплового насоса СОР может достигать значений 4,5-6,5.


Рекуператор с тепловыми трубами.

По принципу работы рекуператор с тепловыми трубами похож на рекуператор с промежуточным теплоносителем. Разница лишь в том, что в потоки воздуха помещают не теплообменники, а так называемые тепловые трубы или точнее термосифоны. Конструктивно это герметично закрытые отрезки медной оребренной трубы, заполненные внутри специально подобранным легкокипящим хладоном. Один конец трубы в вытяжном потоке нагревается, хладон в этом месте кипит и передает воспринятое от воздуха тепло на другой конец трубы, обдуваемый потоком приточного воздуха. Здесь хладон внутри трубы конденсируется и передает тепло воздуху, который нагревается. Полностью исключены взаимное смешивание потоков, их загрязнение и передача запахов. Подвижных элементов нет, трубы в потоки помещают только вертикально либо под небольшим уклоном, чтобы хладон двигался внутри труб от холодного конца к горячему за счет силы тяжести. Коэффициент эффективности 50-70%. Важное условие для обеспечения работы его работы: воздуховоды, в которые установлены термосифоны, должны располагаться вертикально друг над другом.


Рекуператор камерного типа.

Внутренний объем (камера) такого рекуператора разделена заслонкой на две половины. Заслонка время от времени движется, меняя тем самым направление движения потоков вытяжного и приточного воздуха. Вытяжной воздух нагревает одну половину камеры, затем заслонка направляет сюда поток приточного воздуха и он нагревается от нагретых стенок камеры. Этот процесс периодически повторяется. Коэффициент эффективности достигает 70-80%. Но в конструкции есть подвижные детали, в связи с чем существует большая вероятность взаимного смешивания, загрязнения потоков и передачи запахов.

Расчет эффективности рекуператора.

В технических характеристиках рекуперативных вентиляционных установок многих фирм-производителей приводят, как правило, два значения коэффициента рекуперации – по температуре воздуха и его энтальпии. Расчет эффективности работы рекуператора может быть произведен по температуре или по энтальпии воздуха. Расчет по температуре учитывает явное теплосодержание воздуха, а по энтальпии – учитывается еще и влагосодержание воздуха (его относительную влажность). Расчет по энтальпии считается более точным. Для расчета необходимы исходные данные. Их получают путем замера температуры и влажности воздуха в трех местах: в помещении (где вентиляционная установка обеспечивает воздухообмен), на улице и в сечении приточной воздухораспределительной решетки (откуда в помещение попадает обработанный наружный воздух). Формула для расчета эффективности рекуперации по температуре следующая:

Kt = (T4 – T1) / (T2 – T1) , где

  • Kt – коэффициент эффективности рекуператора по температуре;
  • T1 – температура наружного воздуха, oC;
  • T2 – температура вытяжного воздуха (т.е. воздуха в помещении), оС;
  • T4 – температура приточного воздуха, оС.

Энтальпия воздуха – это теплосодержание воздуха, т.е. количество теплоты, содержащейся в нем, отнесенное к 1 кг сухого воздуха. Энтальпию определяют с помощью i-d диаграммы состояния влажного воздуха, нанеся на нее точки, соответствующие замеренной температуре и влажности в помещении, на улице и приточного воздуха. Формула для расчета эффективности рекуперации по энтальпии следующая:

Kh = (H4 – H1) / (H2 – H1) , где

  • Kh – коэффициент эффективности рекуператора по энтальпии;
  • H1 – энтальпия наружного воздуха, кДж/кг;
  • H2 –энтальпия вытяжного воздуха (т.е. воздуха в помещении), кДж/кг;
  • H4 – энтальпия приточного воздуха, кДж/кг.

Экономическая целесообразность применения приточно-вытяжных установок с рекуперацией.

В качестве примера возьмем технико-экономическое обоснование применения вентиляционных установок с рекуперацией в системах приточно-вытяжной вентиляции помещений автосалона.

Исходные данные:

  • объект – автосалон общей площадью 2000 м2;
  • средняя высота помещений 3-6 м, состоит из двух выставочных залов, офисной зоны и станции технического обслуживания (СТО);
  • для приточно-вытяжной вентиляции указанных помещений были выбраны вентиляционные установки канального типа: 1 единица с расходом воздуха 650 м3/час и потребляемой мощностью 0,4 кВт и 5 единиц с расходом воздуха 1500м3/час и потребляемой мощностью 0,83 кВт.
  • гарантированный диапазон наружных температур воздуха для канальных установок составляет (-15…+40) оС.

Для сравнения энергопотребления произведем расчет мощности канального электрического воздухонагревателя, которая необходима для подогрева наружного воздуха в холодное время года в приточной установке традиционного типа (состоящей из обратного клапана, канального фильтра, вентилятора и электрического воздухонагревателя) с расходом воздуха 650 и 1500 м3/час соответственно. При этом стоимость электроэнергии принимаем 5 рублей за 1кВт*час.

Наружный воздух необходимо нагреть от -15 до +20оС.

Расчет мощности электрического воздухонагревателя произведен по уравнению теплового баланса:

Qн = G*Cp*T, Вт , где:

  • – мощность воздухонагревателя, Вт;
  • G - массовый расход воздуха через воздухонагреватель, кг/сек;
  • Ср – удельная изобарная теплоемкость воздуха. Ср = 1000кДж/кг*К;
  • Т – разность температур воздуха на выходе из воздухонагревателя и входе.

T = 20 – (-15) = 35 оС.

1. 650 / 3600 = 0,181 м3/сек

р = 1, 2 кг/м3 – плотность воздуха.

G = 0, 181*1, 2 = 0,217 кг/сек

Qн = 0, 217*1000*35 = 7600 Вт.

2. 1500 / 3600 = 0, 417 м3/сек

G = 0, 417*1, 2 = 0, 5 кг/ сек

Qн = 0, 5*1000*35 = 17500 Вт.

Таким образом, применение в холодное время года канальных установок с рекуперацией тепла вместо традиционных с использованием электрических воздухонагревателей позволяет уменьшить затраты электроэнергии при одном и том же количестве подаваемого воздуха более чем в 20 раз и тем самым позволяет снизить затраты и соответственно увеличить прибыль автосалона. Кроме этого, применение установок с рекуперацией позволяет уменьшить финансовые затраты потребителя на энергоносители на отопление помещений в холодное время года и на их кондиционирование в теплое время примерно на 50%.

Для большей наглядности произведем сравнительный финансовый анализ энергопотребления систем приточно-вытяжной вентиляции помещений автосалона, укомплектованных установками с рекуперацией тепла канального типа и традиционных установок с электрическими воздухонагревателями.

Исходные данные:

Система 1.

Установки с рекуперацией тепла расходом 650 м3/час– 1ед. и 1500 м3/час – 5ед.

Суммарная электрическая потребляемая мощность составит: 0,4 + 5*0,83 = 4,55 кВт*час.

Система 2.

Традиционные канальные приточно-вытяжные вентиляционные установки -1ед. с расходом 650м3/час и 5ед. с расходом 1500м3/час.

Суммарная электрическая мощность установки на 650 м3/час составит:

  • вентиляторы – 2*0,155 = 0,31 кВт*час;
  • автоматика и приводы клапанов – 0,1кВт*час;
  • электрический воздухонагреватель – 7,6 кВт*час;

Итого: 8,01 кВт*час.

Суммарная электрическая мощность установки на 1500м3/час составит:

  • вентиляторы – 2*0,32 = 0,64кВт*час;
  • автоматика и приводы клапанов – 0,1 кВт*час;
  • электрический воздухонагреватель – 17,5 кВт*час.

Итого: (18,24 кВт*час)*5 = 91,2 кВт*час.

Всего: 91,2 + 8,01 = 99,21кВт*час.

Принимаем период использования подогрева в системах вентиляции 150 рабочих дней в год по 9 часов. Получаем 150*9 =1350 часов.

Энергопотребление установок с рекуперацией составит: 4,55*1350 = 6142,5 кВт

Эксплуатационные затраты составят: 5 руб.*6142,5 кВт = 30712,5 руб. или в относительном (к общей площади автосалона 2000 м2) выражении 30172,5 / 2000 = 15,1 руб./м2.

Энергопотребление традиционных систем составит: 99,21*1350 = 133933,5 кВт Эксплуатационные затраты составят: 5 руб.*133933,5 кВт = 669667,5 руб. или в относительном (к общей площади автосалона 2000 м2) выражении 669667,5 / 2000 = 334,8 руб./м2.

В этой статье мы рассмотрим такую характеристику теплообмена, как коэффициент рекуперации. Он показывает степень использования одним носителем тепла другого при теплообмене. Коэффициент рекуперации может называться коэффициентом регенерации тепла, эффективности теплообмена или термической эффективности.

В первой части статьи мы попробуем найти универсальные соотношения для теплообмена. Они могут быть получены из самых общих физических принципов и не требуют проведения каких-либо измерений. Во второй части представим зависимости реальных коэффициентов рекуперации от основных характеристик теплообмена для реальных воздушных завес или отдельно для теплообменных блоков «вода - воздух», которые уже были рассмотрены в статьях «Мощность тепловой завесы при произвольных расходах теплоносителя и воздуха. Интерпретация опытных данных» и «Мощность тепловой завесы при произвольных расходах теплоносителя и воздуха. Инварианты процесса теплопередачи», опубликованных журналом «Мир климата» в номерах 80 и 83 соответственно. Будет показано, как коэффициенты зависят от характеристик теплообменника, а также то, какое влияние на них оказывают расходы теплоносителей. Будут объяснены некоторые парадоксы теплообмена, в частности парадокс высокого значения коэффициента рекуперации при большой разнице в расходах теплоносителей. Для упрощения само понятие рекуперации и смысл ее количественного определения (коэффициент) рассмотрим на примере теплообменников «воздух - воздух». Это позволит определить подход к смыслу явления, который затем можно расширить и на любой обмен, в том числе «вода - воздух». Отметим, что в теплообменных блоках «воздух - воздух» могут быть организованы как перекрестные, принципиально близкие теплообменникам «вода - воздух», так и встречные токи обменивающихся теплом сред. В случае встречных токов, которые определяют высокие значения коэффициентов рекуперации, практические закономерности теплообмена могут несколько отличаться от разобранных ранее . Важно, что универсальные закономерности теплообмена справедливы вообще для любых типов теплообменного блока. В рассуждениях статьи будем считать, что энергия при теплопередаче сохраняется. Это равносильно утверждению, что мощность излучения и конвекция тепла от корпуса теплового оборудования, обусловленные значением температуры корпуса, малы по сравнению с мощностью полезной теплопередачи. Будем также считать, что теплоемкость носителей не зависит от их температур.

КОГДА ВАЖЕН ВЫСОКИЙ КОЭФФИЦИЕНТ РЕКУПЕРАЦИИ?

Можно считать, что способность к передаче определенной величины тепловой мощности - одна из основных характеристик любого теплового оборудования. Чем выше эта способность, тем оборудование дороже. Коэффициент рекуперации в теории может изменяться от 0 до 100%, а на практике часто от 25 до 95%. Интуитивно можно предположить, что высокий коэффициент рекуперации, так же как и способность к передаче большой мощности, подразумевает высокие потребительские качества оборудования. Однако в действительности такой прямой связи не наблюдается, все зависит от условий использования теплообмена. Когда же высокая степень рекуперации тепла важна, а когда второстепенна? Если теплоноситель, от которого производится отбор тепла или холода, используется лишь однократно, то есть не закольцован, и сразу после использования безвозвратно сбрасывается во внешнюю среду, то для эффективного использования этого тепла желательно использовать аппарат с высоким коэффициентом рекуперации. В качестве примеров можно привести использование тепла или холода части геотермальных установок, открытых водоемов, источников технологических избытков тепла, где невозможно замкнуть контур теплоносителя. Высокая рекуперация важна, когда в сети теплоснабжения расчет осуществляется только по расходу воды и значению температуры прямой воды. Для теплообменников «воздух - воздух» это использование тепла вытяжного воздуха, который сразу после теплообмена уходит во внешнюю среду. Другой предельный случай реализуется, когда теплоноситель оплачивается строго по отобранной от него энергии. Это можно назвать идеальным вариантом сети теплоснабжения. Тогда можно заявить, что такой параметр, как коэффициент рекуперации, не имеет вообще никакого значения. Хотя при ограничениях по обратной температуре носителя коэффициент рекуперации также обретает смысл. Отметим, что при некоторых условиях желателен более низкий коэффициент рекуперации оборудования.

ОПРЕДЕЛЕНИЕ КОЭФФИЦИЕНТА РЕКУПЕРАЦИИ

Определение коэффициента рекуперации приводится во многих справочных пособиях (например, , ). Если теплом обмениваются две среды 1 и 2 (рис. 1),

которые имеют теплоемкости с 1 и с 2 (в Дж/кгxК) и массовые расходы g 1 и g 2 (в кг/с) соответственно, то коэффициент рекуперации теплообмена можно представить в виде двух эквивалентных соотношений:

= (с 1 g 1)(Т 1 - Т 1 0) / (сg) min (T 2 0 - T 1 0) = (с 2 g 2)(Т 2 0 - Т 2) / (сg) min (T 2 0 - T 1 0). (1)

В этом выражении Т 1 и Т 2 - конечные температуры этих двух сред, Т 1 0 и Т 2 0 - начальные, а (cg) min - минимальное из двух значений так называемого теплового эквивалента этих сред (Вт/К) при расходах g 1 и g 2 , (cg) min = min{(с 1 g 1), (с 2 g 2)}. Для расчета коэффициента можно использовать любое из выражений, поскольку их числители, каждый из которых выражает полную мощность теплообмена (2), равны.

W = (с 1 g 1)(Т 1 - Т 1 0) = (с 2 g 2)(Т 2 0 - Т 2). (2)

Второе равенство в (2) можно рассматривать как выражение закона сохранения энергии при теплообмене, который для тепловых процессов называется первым началом термодинамики. Можно заметить, что в любом из двух эквивалентных определений в (1) присутствуют только три из четырех температур обмена. Как было указано, значение приобретает значимость, когда один из теплоносителей сбрасывается после использования. Отсюда следует, что выбор из двух выражений в (1) можно всегда сделать так, чтобы именно конечная температура этого носителя была исключена из выражения для расчета. Приведем примеры.

а) Рекуперация тепла вытяжного воздуха

Известным примером теплообменника с высоким необходимым значением может служить рекуператор тепла вытяжного воздуха для подогрева приточного воздуха (рис. 2).

Если обозначить температуру вытяжного воздуха Т комн, уличного Т ул, а приточного после подогрева в рекуператоре Т пр, то, учитывая одинаковое значение теплоемкостей с двух воздушных потоков (они практически одинаковы, если пренебречь малыми зависимостями от влажности и температуры воздуха), можно получить хорошо известное выражение для:

G пр (Т пр - Т ул) / g min (T комн - T ул). (3)

В этой формуле gmin обозначает наименьший g min = min{g пр, g выт } из двух секундных расходов gпр приточного и gвыт вытяжного воздуха. Когда поток приточного воздуха не превышает поток вытяжного, формула (3) упрощается и приводится к виду = (Т пр - Т ул) / (T комн - T ул). Температура, которая не учитывается в формуле (3), - это температура Т’ вытяжного воздуха после прохождения теплообменника.

б) Рекуперация в воздушной завесе или произвольном нагревателе «вода - воздух»

Поскольку при всех возможных вариантах единственная температура, значение которой может быть несущественно, это температура обратной воды Т х, ее следует исключить из выражения для коэффициента рекуперации. Если обозначить температуру воздуха окружения воздушной завесы Т 0 , подогретого завесой воздуха - Т, а температуру поступающей в теплообменник горячей воды Т г, (рис. 3), для получим:

Сg(Т – Т 0) / (сg) min (T г – T 0). (4)

В этой формуле с - теплоемкость воздуха, g - секундный массовый воздушный расход.

Обозначение (сg) min - это наименьшее значение из воздушного сg и водяного с W G тепловых эквивалентов, с W - теплоемкость воды, G - секундный массовый расход воды: (сg) min = min{(сg), (с W G)}. Если расход воздуха относительно невелик и воздушный эквивалент не превышает водяной, формула также упрощается: = (Т – Т 0) / (T г – T 0).

ФИЗИЧЕСКИЙ СМЫСЛ КОЭФФИЦИЕНТА РЕКУПЕРАЦИИ

Можно предположить, что значение коэффициента рекуперации теплового аппарата это количественное выражение термодинамической эффективности передачи мощности. Известно, что для теплопередачи эта эффективность ограничена вторым началом термодинамики, которое также известно как закон неубывания энтропии.

Однако можно показать, что - это действительно термодинамическая эффективность в смысле неубывания энтропии только в случае равенства тепловых эквивалентов двух обменивающихся теплом сред. В общем случае неравенства эквивалентов максимально возможное теоретическое значение = 1 обусловлено постулатом Клаузиуса, который сформулирован так: «Тепло не может передаваться от более холодного к более теплому телу без других изменений в то же время, связанных с этой передачей». В этом определении под другими изменениями подразумевается работа, которая совершается над системой, например, при обратном цикле Карно, на основе которого работают кондиционеры. Учитывая, что насосы и вентиляторы при теплообмене с такими носителями, как вода, воздух и другими, производят над ними ничтожно малую работу по сравнению с энергиями обмена теплом, можно считать, что при таком теплообмене постулат Клаузиуса выполняется с высокой степенью точности.

Хотя принято считать, что и постулат Клаузиуса и принцип неубывания энтропии - это всего лишь разные по форме выражения формулировки второго начала термодинамики для замкнутых систем, это не так. Чтобы опровергнуть их эквивалентность покажем, что они могут приводить в общем случае к различным ограничениям при теплообмене. Рассмотрим рекуператор «воздух - воздух» в случае равных тепловых эквивалентов двух обменивающихся сред, что при равенстве теплоемкостей подразумевает равенство массовых расходов двух воздушных потоков, и = (Т пр - Т ул) / (T комн - T ул). Пусть для определенности комнатная температура T комн = 20 о С, а уличная T ул = 0 о С. Если полностью отвлечься от скрытой теплоты воздуха, которая обусловлена его влажностью, то, как следует из (3), температура приточного воздуха Т пр = 16 о С соответствует коэффициенту рекуперации = 0,8, а при Т пр = 20 о С достигнет значения 1. (Температуры выбрасываемого на улицу в этих случаях воздуха Т’ будут соответственно 4 о С и 0 о С). Покажем, что именно = 1 для этого случая есть максимум. Ведь даже если приточный воздух имел температуру Т пр = 24 о С, а выбрасываемый на улицу Т’ = –4 о С, то первое начало термодинамики (закон сохранения энергии) не было бы нарушено. Уличному воздуху ежесекундно будет передаваться Е = сg·24 о С Джоулей энергии и столько же забираться у комнатного, а при этом будет равно 1,2, или 120%. Однако такая передача тепла невозможна именно вследствие того, что энтропия системы при этом уменьшится, что запрещено вторым началом термодинамики.

Действительно, по определению энтропии S, ее изменение связанно с изменением полной энергии газа Q соотношением dS = dQ/T (температура измеряется в Кельвинах), а учитывая, что при постоянном давлении газа dQ = mcdT, m - масса газа, с (или как ее часто обозначают с р) - теплоемкость при постоянном давлении, dS = mc · dT/T. Таким образом, S = mc · ln(T 2 / Т 1), где Т 1 и Т 2 начальная и конечная температуры газа. В обозначениях формулы (3) для секундного изменения энтропии приточного воздуха получим Sпр = сg ln(Tпр / Tул), если уличный воздух нагревается, оно положительно. Для изменения энтропии вытяжного воздуха Sвыт = с g · ln(T / Tкомн). Изменение энтропии всей системы за 1 секунду:

S = S пр + S выт = сg(ln(T пр / T ул) + ln(T’ / T комн)). (5)

Для всех случаев будем считать Т ул = 273К, Т комн = 293К. Для = 0,8 из (3), Т пр = 289К и из (2) Т’ = 277К, что позволит рассчитать общее изменение энтропии S =0,8 = 8 10 –4 cg. При = 1 аналогично получим Т пр = 293К и Т’ = 273К, и энтропия, как и следует ожидать, сохраняется S =1 = 0. Гипотетическому случаю = 1,2 соответствуют Т пр = 297К и Т’ = 269К, и расчет демонстрирует уменьшение энтропии: S =1,2 = –1,2 10 –4 cg. Этот расчет можно считать обоснованием невозможности этого процесса c = 1,2 в частности, и вообще для любого > 1 также из-за S < 0.

Итак, при расходах, которые обеспечивают равные тепловые эквиваленты двух сред (для одинаковых сред это соответствует равным расходам), коэффициент рекуперации определяет эффективность обмена в том смысле, что = 1 определяет предельный случай сохранения энтропии. Постулат Клаузиуса и принцип неубывания энтропии для такого случая эквивалентны.

Теперь рассмотрим для теплообмена «воздух - воздух» неравные воздушные расходы. Пусть, например, массовый расход приточного воздуха 2g, а вытяжного - g. Для изменения энтропии при таких расходах получим:

S = S пр + S выт = 2с · g ln(T пр / T ул) + с · g ln(T’ / T комн). (6)

Для = 1 при тех же начальных температурах Т ул = 273К и Т комн = 293К, используя (3), получим Т пр = 283К, так как g пр / g min = 2. Затем из закона сохранения энергии (2) получим значение Т’ = 273К. Если подставить эти значения температур в (6), то для полного изменения энтропии получим S = 0,00125сg > 0. То есть даже при самом благоприятном случае с = 1 процесс становится термодинамически неоптимален, он происходит с увеличением энтропии и, как следствие этого, в отличие от подслучая с равными расходами, всегда необратим.

Чтобы оценить масштаб этого увеличения, найдем коэффициент рекуперации для уже рассмотренного выше обмена равных расходов, чтобы в результате этого обмена была произведена такая же величина энтропии, как и для расходов, различающихся в 2 раза при = 1. Другими словами, оценим термодинамическую неоптимальность обмена разных расходов при идеальных условиях. Прежде всего само изменение энтропии мало о чем говорит, намного информативнее рассмотреть отношение S / Е изменения энтропии к переданной теплообменом энергии. Учитывая, что в вышеприведенном примере, когда энтропия возрастает на S = 0,00125сg, переданная энергия Е = сg пр (Т пр - Т ул) = 2с g 10К. Таким образом отношение S / Е = 6,25 10 –5 К -1 . Нетрудно убедиться, что к такому же «качеству» обмена при равных потоках приводит коэффициент рекуперации = 0,75026… Действительно, при тех же начальных температурах Т ул = 273К и Т комн = 293К и равных потоках этому коэффициенту соответствуют температуры Т пр = 288К и Т’ = 278К. Используя (5), получим изменение энтропии S = 0,000937сg и учитывая, что E = сg(T пр - T ул) = сg 15К, получим S / Е = 6,25 10 –5 К -1 . Итак, по термодинамическому качеству теплообмен при = 1 и при вдвое различающихся потоках соответствует теплообмену при = 0,75026… при одинаковых потоках.

Можно задаться еще одним вопросом: какими должны быть гипотетические температуры обмена с разными расходами, чтобы этот воображаемый процесс произошел без увеличения энтропии?

Для = 1,32 при тех же начальных температурах Т ул = 273К и Т комн = 293К, используя (3), получим Т пр = 286,2К и из закона сохранения энергии (2) Т’ = 266,6К. Если подставить эти значения в (6), то для полного изменения энтропии получим сg(2ln(286,2 / 273) + ln(266,6 / 293)) 0. Закон сохранения энергии и закон неубывания энтропии для этих значений температур выполняются, и все же обмен невозможен по причине того, что Т’ = 266,6К не принадлежит начальному интервалу температур. Это прямо нарушало бы постулат Клаузиуса, передавая энергию от более холодной среды к нагретой. Следовательно, этот процесс невозможен, как невозможны и другие не только с сохранением энтропии, но даже и с ее увеличением, когда конечные температуры любой из сред выходят за пределы начального интервала температур (Т ул, Т комн).

При расходах, которые обеспечивают неравные тепловые эквиваленты сред обмена, процесс теплопередачи принципиально необратим и проходит с увеличением энтропии системы даже в случае наиболее эффективного теплообмена. Эти рассуждения справедливы и для двух сред разных теплоемкостей, важно лишь то, совпадают или нет тепловые эквиваленты этих сред.

ПАРАДОКС МИНИМАЛЬНОГО КАЧЕСТВА ТЕПЛООБМЕНА С КОЭФФИЦИЕНТОМ РЕКУПЕРАЦИИ 1/2

В этом пункте рассмотрим три случая теплообмена с коэффициентами рекуперации 0, 1/2 и 1 соответственно. Пусть через теплообменники пропускаются равные потоки обменивающихся теплом сред равных теплоемкостей с некоторыми различными начальными температурами Т 1 0 и Т 2 0 . При коэффициенте рекуперации 1 две среды просто обмениваются значениями температур и конечные температуры зеркально повторяют начальные Т 1 = Т 2 0 и Т 2 = Т 1 0 . Очевидно, что энтропия при этом не изменяется S = 0, потому что на выходе те же среды тех же температур, как и на входе. При коэффициенте рекуперации 1/2 конечные температуры обеих сред будут равны среднему арифметическому значению начальных температур: Т 1 = Т 2 = 1/2 (Т 1 0 + Т 2 0). Произойдет необратимый процесс выравнивания температуры, а это равносильно росту энтропии S > 0. При коэффициенте рекуперации 0 теплообмен отсутствует. То есть Т 1 = Т 1 0 и Т 2 = Т 2 0 , и энтропия конечного состояния не изменится, что аналогично конечному состоянию системы с коэффициентом рекуперации, равным 1. Как состояние с = 1 тождественно состоянию с = 0, так же по аналогии можно показать, что состояние = 0,9 тождественно состоянию с = 0,1 и т. д. При этом состоянию с = 0,5 будет соответствовать максимальное увеличение энтропии из всех возможных коэффициентов. По-видимому, = 0,5 соответствует теплообмену минимального качества.

Конечно же, это не так. Объяснение парадокса следует начать с того, что теплообмен есть обмен энергией. Если энтропия в результате теплообмена увеличилась на некоторую величину, то качество теплообмена будет различаться в зависимости от того, была ли при этом передана теплота 1 Дж или 10 Дж. Правильнее рассматривать не абсолютное изменение энтропии S (фактически ее выработку в теплообменнике), а отношение изменения энтропии к переданной при этом энергии E. Очевидно, что для различных наборов температур можно подсчитать эти величины для = 0,5. Сложнее подсчитать это отношение для = 0, ведь это неопределенность вида 0/0. Однако несложно взять передел отношения в 0, который в практическом плане можно получить, взяв это отношение при очень малых значениях, например, 0,0001. В таблицах 1 и 2 представим эти значения для различных начальных условий по температуре.



При любых значениях и при бытовых интервалах разброса температур Т ул и Т комн (будем считать, что Т комн / Т ул x

S / E (1 / Т ул - 1 / Т комн)(1 -). (7)

Действительно, если обозначить Т комн = Т ул (1 + х), 0 < x

На графике 1 покажем эту зависимость для температур Т ул = 300К Т комн = 380К.



Это кривая не является прямой линией, определяемой приближением (7), хотя достаточно близка к ней, так что на графике они неразличимы. Формула (7) показывает, что качество теплообмена минимально именно при = 0. Сделаем еще одну оценку масштаба S / E. В примере, приведенном в , рассматривается соединение двух тепловых резервуаров с температурами Т 1 и Т 2 (Т 1 < T 2) теплопроводящим стержнем. Показано, что в стержне на единицу переданной энергии вырабатывается энтропия 1/Т 1 –1/Т 2 . Это соответствует именно минимальному качеству теплообмена при рекуперации с = 0. Интересное наблюдение заключается в том, что по физическому смыслу приведенный пример со стержнем интуитивно подобен теплообмену с = 1/2 , поскольку в обоих случаях происходит выравнивание температуры к среднему значению. Однако формулы демонстрируют, что он эквивалентен именно случаю теплообмена с = 0, то есть теплообмену с наиболее низким качеством из всех возможных. Без вывода укажем, что это же минимальное качество теплообмена S / E = 1 / Т 1 0 –1 / Т 2 0 в точности реализуется для -> 0 и при произвольном соотношении расходов теплоносителей.

ИЗМЕНЕНИЕ КАЧЕСТВА ТЕПЛООБМЕНА ПРИ РАЗЛИЧАЮЩИХСЯ РАСХОДАХ ТЕПЛОНОСИТЕЛЕЙ

Будем считать, что расходы теплоносителей различаются в n раз, а теплообмен происходит с максимально возможным качеством (= 1). Какому качеству теплообмена с равными расходами это будет соответствовать? Для ответа на этот вопрос посмотрим, как ведет себя величина S / E при = 1 для различных соотношений расходов. Для разницы расходов n = 2 это соответствие уже было подсчитано в 3 пункте: = 1 n=2 соответствует = 0,75026… при одинаковых потоках. В таблице 3 для набора температур 300К и 350К представим относительное изменение энтропии при равных расходах теплоносителей одинаковой теплоемкости для различных значений.



В таблице 4 представим также относительное изменение энтропии для различных соотношений расходов n только при максимально возможной эффективности теплопередачи (= 1) и соответствующие эффективности, приводящие к такому же качеству для равных расходов.



Представим полученную зависимость (n) на графике 2.



При бесконечной разнице расходов стремится к конечному пределу 0,46745… Можно показать, что это универсальная зависимость. Она справедлива при любых начальных температурах для любых носителей, если вместо соотношения расходов подразумевать соотношение тепловых эквивалентов. Ее также можно приблизить гиперболой, которая обозначена на графике 3 линией синего цвета:



‘(n) 0,4675+ 0,5325/n. (8)

Линией красного цвета обозначена точная зависимость (n):

Если неравные расходы реализуются при обмене с произвольным n>1 , то термодинамическая эффективность в смысле производства относительной энтропии уменьшается. Ее оценку сверху приведем без вывода:

Это соотношение стремится к точному равенству при n>1, близких к 0 или 1, а при промежуточных значениях не превышает абсолютной погрешности в несколько процентов.

Окончание статьи будет представлено в одном из следующих номеров журнала «МИР КЛИМАТА». На примерах реальных теплообменных блоков найдем значения коэффициентов рекуперации и покажем, насколько они определяются характеристиками блока, а насколько расходами теплоносителей.

ЛИТЕРАТУРА

  1. Пухов А. воздуха. Интерпретация опытных данных. // Мир климата. 2013. № 80. С. 110.
  2. Пухов А. В. Мощность тепловой завесы при произвольных расходах теплоносителя и воздуха. Инварианты процесса теплопередачи. // Мир климата. 2014. № 83. С. 202.
  3. Кейс В. М., Лондон А. Л. Компактные теплообменники. . М.: Энергия, 1967. С. 23.
  4. Уонг Х. Основные формулы и данные по теплообмену для инженеров. . М.: Атомиздат, 1979. С. 138.
  5. Кадомцев Б. Б. Динамика и информация // Успехи физических наук. Т. 164. 1994. № 5, май. С. 453.

Пухов Алексей Вячеславович,
технический директор
компании «Тропик Лайн»

В доме, где хорошо работает система вентиляции, человек себя чувствует очень комфортно и меньше болеет.

Однако для обеспечения традиционной хорошей вентиляции необходимо увеличить значительно расходы на отопление и кондиционирование (для поддержания нормальной температуры воздуха в доме).

Что такое рекуператор воздуха?

В наше время используют усовершенствованную система вентиляции с применением специальных устройств, которые позволяют существенно снизить потери тепла зимой при вытяжке отработанного воздуха и не допустить жару в дом летом при подаче с улицы перегретого воздуха. Данное устройство называется рекуператором воздуха , фото 1.

Фото 1. Рекуператор воздуха в системе вентиляции дома

При правильной установке и работе рекуператор воздуха способен «возвращать» 2/3 тепла, которое уходит с переработанным воздухом. Все рекуператоры содержат в свое структуре фильтры для очистки приточного воздуха и в зависимости от модификации может быть разного качества очистки.

Преимущества применения рекуператора воздуха в общей системе вентиляции:

  1. Снижает расходы на отопление и вентиляцию (до 30…50%).
  2. Комфортный микроклимат в доме, постоянно свежий воздух.
  3. Снижает уровень содержания пыли в доме.
  4. Низкие расходы на эксплуатацию.
  5. Не сложная установка.
  6. Оборудование долговечно.

Конструкция рекуператора воздуха

Рекуператор воздуха состоит из двух камер, которые проходят близко друг к другу, фото 2 . Между камерами происходит теплообмен, что позволяет в зимнее время подогревать приточный поток воздуха за счет теплоты вытяжного потока, а летом наоборот.

Фото 2. Принципиальная схема работы рекуператора воздуха

Виды рекуператоров

Рекуператоры воздуха существуют следующих видов.

  • пластинчатые;
  • роторные;
  • водные;
  • кровельный.

Пластинчатый рекуператор

Пластинчатый рекуператор представляет собой корпус, в который входят и выходят трубы прямоугольного сечения. Своей одной стороной две трубы соприкасаются, что обеспечивает теплообмен между ними. Внутри труб расположены оцинкованные пластины, которые нагреваются, охлаждаются и передают тепло, фото 3 . В пластинчатом рекуператоре потоки приточного и вытяжного воздуха не смешиваются.

Пластинки изготовлены из материала, у которого высокая теплопроводность, к ним относятся:

  • специальный пластик;
  • медь;
  • алюминий.

Фото 3. Пластинчатый рекуператор воздуха

Преимущества пластинчатого рекуператора воздуха :

  • компактное;
  • относительно недорогое;
  • бесшумная работа;
  • высокая производительность устройства (КПД составляет 45…65%);
  • нет электропривода и зависимости от электричества;
  • высокий срок службы (практически не ломаются).

Недостаток пластинчатого рекуператора воздуха:

  1. Зимой в мороз большая вероятность обмерзания вытяжного механизма.
  2. Не выполняется влагообмен.
фото 4 ) состоит из таких основных элементов:
  • цилиндр;
  • вращающийся барабан (ротор);
  • корпус.

Внутри цилиндра установлено множество тонких гофрированных металлических пластин (теплообменники).

Фото 4. Роторный рекуператор

С помощью вращающегося барабана осуществляется работа рекуператора в двух режимах:

1 – пропускание вытяжного потока из помещения;

2 – пропускание приточного потока воздуха.

Работой роторного рекуператора руководит его электроника, которая в зависимости от внешней и внутренней температуры определяет количество оборотов и режим работы. Таким образом, металлические пластины то нагреваются, то отдают тепло.

В рекуператоре роторного типа может быть один или два ротора.

Преимущества роторного рекуператора:

  1. Высокая эффективность устройства. КПД достигает до 87%.
  2. Зимой не происходит намерзания устройства.
  3. Не сушит воздух. Частично возвращает влагу обратно в помещение.

Недостатки роторного рекуператора:

  1. Большие габариты оборудования.
  2. Зависимость от электричества.

Область применения:

  1. Частный дома;
  2. Офисные помещения.
  3. Гаражи.

Водный рекуператор

Водяной рекуператор (рециркуляционный) – это рекуператор, у которого теплообменником служит вода или антифриз, фото 5 . Данный рекуператор по конструкции напоминает традиционную систему отопления. Жидкость теплообменника нагревается от выходящего воздуха, а приточный воздух нагревается от теплообменника.

Фото 5. Водяной рекуператор

Преимущества водяного рекуператора:

  1. Нормальный показатель эффективности работы, КПД — 50…65%.
  2. Возможность установки его отдельных частей в разных местах.

Недостатки водяного рекуператора:

  1. Сложная конструкция.
  2. Не возможен влагообмен.
  3. Зависимость от электроэнергии.

– это рекуператор промышленного назначения. КПД данного типа рекуператора составляет 55…68%.

Это оборудование не используется для частных домов и квартир.

Фото 6. Кровельный рекуператор воздуха

Основные достоинства:

  1. Невысокая стоимость.
  2. Безотказная работа.
  3. Простота установки.

Рекуператор собственного изготовления

Если у вас есть желание, то можно и самому изготовить рекуператор воздуха. Для этого можно внимательно изучить схемы рекуператоров, которые есть в интернете и определиться с основными габаритами устройства.

Рассмотрим последовательность выполнения работ:

  1. Выбор материалов для рекуператора.
  2. Изготовление отдельных элементов.
  3. Изготовление теплообменника.
  4. Сборка корпуса и его утепления.

Проще всего изготовить рекуператор пластинчатого типа.

Для изготовления корпуса можно использовать следующие материалы:

  • листовая жесть (сталь);
  • пластик;
  • дерево.

Для утепления корпуса можно применить такие материалы:

  • стекловолокно;
  • минеральная вата;
  • пенопласт.

Конев Александр Анатольевич