Конструкции молниеотводов. Деление молниеотводов на виды Одиночный стержневой молниеотвод назначение

Молниезащита дома:

Молния не зря относится к наиболее опасным явлениям природы. По своей сути, она является огромным электрическим разрядом, который возникает в атмосфере. Для молнии характерна очень яркая вспышка, в сопровождении громовых раскатов. Ее действие нередко приводит к выходу из строя всевозможного электрооборудования и электронных устройств. Молния вызывает повреждения строений, из-за нее часто возникают пожары, а людей поражает электрический ток.

В связи с тем, что молнии в природе - довольно частое явление, на первый план выходит молниезащита дома и других строений от возможных повреждений. Для этого разработаны комплексные меры, по предотвращению прямого попадания в здание электрического заряда.

Главные функции молниезащиты

По своему прямому назначению защита частного дома от молний может быть внутренней или внешней. Внешняя функция защиты заключается в перехвате молнии с последующим отводом в землю электрического заряда. Таким образом, здание надежно защищается от повреждений, а людям, находящимся в нем, становится не страшно поражение током.

Внутренняя защита дома предохраняет приборы и оборудование от возможных скачков напряжения, возникающих в сети. Такие скачки возникают, когда электромагнитное поле изменяет свою напряженность в том месте, куда пришелся удар молнии. Для защиты применяются специальные устройства, способные нейтрализовать импульсные перенапряжения.

Внешняя молниезащита дома разделяется на активную и пассивную. Использование активной защиты началось сравнительно недавно. Однако, она уже выявила ряд серьезных преимуществ в сравнении с обычной пассивной схемой молниезащиты. Основное отличие заключается в наличии молниеприемника. Во время грозы, он производит ионизацию окружающего пространства, тем самым существенно увеличивая радиус своего действия. Данное устройство совершенно безопасно, для его использования не требуются дополнительные затраты. Следует более подробно рассмотреть основные способы защиты от молний.

Как защититься от молнии

В активной системе защиты установка молниеприемника осуществляется выше, чем один метр, над самой высокой частью здания и, практически, не портит его внешний вид. В итоге, получается большая защищаемая площадь и незначительный расход материалов для устройства элементов защиты.

Активная защита от молний является достаточно эффективной с экономической точки зрения. Она требует меньшего количества молниеприемных и токоотводящих элементов. Данная система отличается довольно простым монтажом.

Однако, в настоящее время, более широко применяется традиционная пассивная защита. Для ее устройства применяются металлические элементы, которые используются в качестве молниеприемников. Их установка производится на крышах и других, наиболее подходящих частях домов.

В , где кровли имеют очень большую площадь, молниеприемники устраиваются из металлических сеток или тросов. Такие конструкции не подходят для частных домов, поэтому, их можно подробно не рассматривать.

В загородных домах и на дачах чаще всего используется классическая конструкция молниеотвода, основой которой являются металлические стержни. В некоторых случаях они могут комбинироваться с сеткой из металла. Иногда, молниеприемником может служить сама металлическая крыша. Чтобы молния при ударе не прожгла ее, толщина кровельного металла должна составлять от 4 миллиметров и выше.

Огромный практический опыт использования пассивной молниезащиты частных домов позволил осуществить разработку специальной технической документации. Ее использование позволяет точно рассчитать все параметры защитной системы и расход материалов для любого дома или дачи. Точные расчеты обеспечивают ее долговременную и надежную работу.

Монтаж внешней молниезащиты

В качестве недостатков пассивной системы, можно отметить громоздкость конструкции, которая нередко портит внешний вид дома, высокую материалоемкость и значительно меньшую зону покрытия по сравнению с активным вариантом.

Однако, когда другие варианты неприемлемы и не могут быть использованы с технической точки зрения, наиболее целесообразным будет применение классических стержневых молниеотводов.

Устройство стержневого молниеотвода

Стержневые молниеотводы еще называются громоотводами. Классическая конструкция включает в себя молниеприемник, токоотвод и заземлитель.

Молниеприемник представляет собой металлический стержень, располагающийся в зоне возможных действий молнии. Для токоотвода используется проводник с большим сечением. С его помощью производится соединение молниеприемника и заземлителя. Сам заземлитель изготавливается из одного или нескольких проводников, которые закапываются в землю.

Все элементы громоотводы закрепляются и соединяются между собой независимо от самого здания. Чем больше высота дома, тем выше вероятность удара молнии. Поэтому, защищаемый объект должен иметь молниеотвод, расположенный на значительной высоте. Иногда защитная конструкция устраивается возле здания, но по высоте она все равно должна превосходить его.

Данная конструкция получила широкое применение, благодаря простоте и надежности, а также возможности установки практически в любых местах. Кроме громоотвода, в пассивную систему входит заземление, без которого не будут выполняться защитные функции. Его устройство осуществляется по определенным схемам, поэтому, на заземлении стоит остановиться подробнее.

Устройство заземления в системе молниезащиты

Основной конструкцией заземления является заземляющий контур. Он состоит из вертикальных и горизонтальных заземлителей. Вертикальные заземлители имеют длину от 3 до 5 метров. Однако, при высоком удельном сопротивлении грунта, их размер может быть гораздо больше. Поэтому, вертикальные заземлители изготавливаются из стальных стержней, покрытых медью. Каждый из них имеет латунную муфту с резьбой, для того, чтобы, при необходимости, состыковать их между собой и погрузить в грунт на значительную глубину, вплоть до 20 метров. На большой глубине значение удельного сопротивления грунта остается неизменным, не зависит от влияния погоды и перепадов температур. Для установки вертикальных конструкций может использоваться вибромолот.

Горизонтальные заземлители изготавливаются из стальных полос или прутков, с сечением 160 мм2. Все заземлители в местах пересечений и соединений свариваются внахлест. Нахлест для круглых конструкций составляет не менее двух диаметров, а плоские конструкции должны перехлестываться на две ширины. Особое внимание следует обращать на непрерывность сварочного шва. Чтобы избежать существенных разрушений от воздействия молнии на границе земли и воздуха, конструкции заземлителей необходимо тщательно изолировать. Изоляция должна производиться на 10 см выше и настолько же ниже уровня земли. После изоляции грунтом, эти места покрываются эмалью в два слоя. Все места сварки подвергаются тщательной обработке специальным антикоррозийным составом.

Надежное соединение и токоотвода осуществляется с помощью специально разработанных электрозажимов, значительно ускоряющих и упрощающих проведение монтажных работ.

Устройство внутренней молниезащиты частного дома

Для внутренней молниезащиты частного дома устанавливаются специальные устройства для защиты электрических сетей и подключенного к ним оборудования. Данная защита необходима при скачках напряжения, появляющихся в результате удара молнии. Избыточное напряжение в сети может возникнуть как при непосредственном воздействии молнии, так и во время растекания заряда, перехваченного системой молниеотвода. В это время изменяется напряженность электромагнитного поля, вызывающая в сети импульсный ток. При таком перенапряжении могут выйти из строя даже электроприборы, находящиеся в выключенном состоянии, со шнуром в розетке.

Повреждающие факторы могут быть разными, поэтому, внутренняя защита разделяется на следующие классы:

  1. 1-й класс. Цепи управления, питания и сигнализации предохраняются от возможных повреждений. Местом установки является главный ввод кабеля.
  2. 2-й класс. Используется для страховки первого класса и устанавливается в главном .
  3. 3-й класс. Выполняет локальные функции по гашению высокочастотных остаточных колебаний и перепадов напряжения, не ликвидированных двумя первыми линиями защиты. Местом их установки являются распределительные щиты вспомогательного назначения.
  4. В комбинированных устройствах сочетаются защитные свойства 1 и 2 класса.

В большинстве случаев, чтобы обеспечить безопасную эксплуатацию электрических сетей, достаточно установить защиту 1-го класса. Однако, если в доме имеется дорогостоящее или ценное оборудование, то осуществляется дополнительная защита, путем установки защитных устройств 3-го класса непосредственно перед этим оборудованием. В распределительный щит, питающий эти устройства, монтируется защита 2-го класса.

Таким образом, устройство молниезащиты в современных частных домах, наполненных дорогостоящей аппаратурой, совсем нелегкое дело. Здесь не поможет установка громоотвода, выполненная кустарным способом. Для устройства нормальной защиты необходимы квалифицированные специалисты, способные произвести все необходимые расчеты.

Молниезащита сельской индивидуальной малоэтажной застройки в соответствии с широко распространенным опытом должна осуществляться при помощи молниеприемников на крышах домов или на высоких деревьях, высота которых в 2-2,5 раза выше домов застройки. Эти рекомендации исходят из того, что сооружение предлагаемых молниеотводов не потребует значительных материальных затрат, при этом забывая, что кровля стоит больших денег и требует бережного к ней отношения, а установка молниеприемников на деревьях на высоте 15- 20 м не может быть рекомендована по соображениям техники безопасности.
Подавляющее большинство строений в сельской местности покрыты шифером, дранкой или соломой, не допускающими без опасности их повреждения установки молниезищитных устройств. И только строения, покрытые металлом, могут быть оборудованы такими молниеприемниками.

В качестве универсального молниезащитного устройства может быть предложен одиночный стержневой молниеотвод с заземляющим устройством, представленный на рис. 2.

Преимуществом одиночного стержневого молниеотвода является его универсальность, возможность путем выбора соответствующего места защитить значительные площади с несколькими строениями, а также долговечность, простота обслуживания и т.д.

Цель нашей статьи - не только ознакомить читателей с методикой расчета молниеотводов, но и предложить конструкцию, на основе которой можно спроектировать и построить молниеотвод меньшей высоты. Для изготовления молниеотвода могут быть использовны бывшие в употреблении трубы, швеллеры и уголки.

Изготовление молниеотвода доступно тем, кто способен выполнять простейшие слесарные работы: резку металла, в том числе и абразивным кругом, сверление, опиловку и т.п. Сварочные работы должны выполняться сварщиком или тем, кто имеет опыт сварочных работ. Подъем мачты рассчитан на то, что эта операция будет производиться без использования специальных машин силами 3-4 человек. Как следует из рис. 2, молниеприемник и молниеотвод должны крепиться на мачте, высота которой зависит от размеров зоны защиты молниеотвода.
На рис. 8 представлена конструкция молниеотводов, выполненная из металла, в силу чего она может быть использована и как молниеприемник и как молниеотвод.

Представленный молниеотвод состоит из узлов мачты и основания, соединенных между собой осью. На оси узел мачты, находящийся при изготовлении в горизонтальном положении, поворачивают и устанавливают в вертикальное положение. Такая конструкция позволяет избежать работ на высоте и дает возможность производить осмотр, окраску и ремонт мачты в более удобном горизонтальном (опущенном) положении.

Для предотвращения раскачивания мачты под действием ветров ее укрепляют с помощью трех растяжек.

Узел мачты представляет собой платформу, к которой приваривают мачту, состоящую из 5 труб (рис. 8, дет. 1-5), соединенных сваркой. Узел основания состоит из платформы, аналогичной платформе узла мачты, но сваренной в зеркальном отражении (то есть полки однозначных деталей должны быть обращены навстречу друг другу), как это показано на рис. 8.


Рис. 8. Конструкция металлического одиночного молниеотвода (номер, название, сортамент, размеры и количество заготовок). Узел мачты:
1 - труба Ду20, L=3,15 м, кол. 1 шт.;
2 - труба Ду25, L=3,15 м, кол. 1 шт.;
3 - труба Ду32, L=4,15 м, кол. 1 шт.;
4 - труба Ду40, L=5,15 м, кол. 1 шт.;
5 - труба Ду50, L=5,00 м, кол. 1 шт.;
6 и 16 - швеллер № 12, L=600 мм, кол. 2 шт.;
7 и 17 - швеллер № 12, l_=240 мм, кол. 4 шт.;
8 - косынка, лист толщ. 4 мм, треуг. 800x200 мм, кол. 3 шт.;
9 - полупетля: уголок 50x50 мм, L-170 мм, кол. 2 шт.;
10 - болты М12, кол. 6 шт.;
11 - прокладки, лист толщ. 1 мм, кол. 6 шт.;
12 - ось, круг (16 мм, L=700 мм, кол. 1 шт.;
13 - угольник стопорящий, уголок 50x50,
Ц=220 мм, кол. 1 шт.;
14 - болты М12, кол. 2 шт.;
15 - прокладки, лист толщ. 1 мм, кол. 6 шт.
Неподвижный узел:
18 - кронштейн, уголок 50x50 мм, 1_=180 мм, кол. 2 шт.;
19 - полупетля, уголок 50x50 мм, 1_=180 мм,
кол. 2 шт.;
20 - нога, труба ДуЮО, длина определяется
расчетом, кол. 3 шт.;
21 - пластина, лист толщ. 4 мм, 250x250 мм,
кол. 3 шт.;
22 - технологическая мачта, труба Ду50,
L=4500 мм, кол. 1 шт.;
23 - стремянка, круг Ф12, 1_=210 мм, кол. 2 шт.;
24 - растяжка, кол. 3 шт.;
25 - труба Ду32, 1_=120 мм, кол. 1 шт.;
26 - звенья цепи, кол. 3 шт.;
27 - пластина, кол. 1 шт.;
28 - упоры, кол. 3 шт.;
29 - фигурная шайба, кол. 3 шт.;
30 - швеллеры якоря (швеллер № 12, 1_=1500 мм, кол. 4 шт.; L=600 мм, кол. 4 шт.)

К платформе с нижней стороны приваривают три ноги, к нижней части которых также приваривают пластины. Длина ног зависит от глубины промерзания почвы и вычисляется по формулам, приведенным на рис. 11. Угольник 13 служит для стопорения поднятой мачты. Стопорение производят с помощью двух болтов Ml2, стягивающих угольник 13 с дет. 18, принадлежащей узлу основания.

Для регулировки положения мачты в поднятом состоянии предусматриваются прокладки. Под каждой из полупетель 9 и под болтами угольника 13 устанавливают пакет прокладок толщиной 3 мм. Форма прокладок должна обеспечивать возможность их удаления без снятия полупетель 9 и угольника 13.
Примерная форма прокладок представлена на рис. 8, дет. 11 и 15.

После изготовления деталей молниеотвода необходимо произвести сборку узла мачты и узла основания. Сборку узла мачты начинают со сборки самой мачты.
Последнее звено мачты (дет. 5) изготовлено из газоводопроводной трубы Ду50 (2") с внутренним диаметром 53 мм. В нее должна вставляться дет. 4 - труба Ду40 (1 1/2") с наружным диаметром 48 мм. Зазор между трубами составляет 5 мм или 2,5 мм на сторону. Для центрирования труб необходимо к концу трубы дет. 4 прихватить сваркой четыре предварительно подогнутые пластины толщиной 2,5 мм, длиной 150 мм, разведенные между собой на равные расстояния. После опиловки (если в этом возникнет потребность) вставить обработанный конец трубы 4 в трубу 5 на глубину 150 мм. На ровной достаточно твердой площадке (например, дорожке) уложить соединенные трубы дет. 4 и дет. 5 и с помощью подкладок выставить их в горизонт, после чего сделать первую прихватку. Повернув трубы на 180°, вновь выставив их в горизонт, делаем вторую прихватку. Повторяем операцию, повернув сваренные трубы на 90°.

Производим проверку - трубы, повернутые под любым углом, должны сохранять параллельность. Убедившись, что сваренные трубы соосны,. окончательно обвариваем стык. Через ранее просверленные в трубе дет. 5 четыре отверстия диаметром 10 мм, расположенные в 120 мм от свариваемого стыка, сварить дет. 4 и 5, как это показано на рис. 8. Отличительной особенностью соединения дет. 4 с дет. 3 является то, что наружный диаметр дет. 3, равный 42,3 мм, будет больше внутреннего диаметра трубы дет. 4-41 мм. Излишний металл с дет. 3 удаляют при помощи напильника. Соединение дет. 3 и 2 проводят аналогично соединению дет. 4 и дет. 5, а соединение дет. 1 и 2 должно производиться без предварительной обработки. На этом сборку мачты заканчивают. Собранную мачту необходимо уложить на козлы с опорой на диаметры 2" и 1 1/2", как это показано на рис. 9-1.

Следующим этапом работы является изготовление платформ узлов мачты и основания. Платформы сварены из деталей 6 и 7, 16 и 17. На верхнюю часть платформы узла мачты в дальнейшем приваривают мачту, в силу чего сваренные детали должны образовать правильную плоскость. Детали платформы целесообразно сваривать на плоском металлическом листе. Во избежание сварочных деформаций детали 6 и 7 должны быть предварительно прихвачены с обеих сторон, в случае необходимости отрихтованы и только после этого обварены.

Для сборки платформ узлов мачт и основания необходимо платформу узла основания установить на верстак, затем размешают прокладки толщиной 3-4 мм и далее - платформу узла мачты. Потом собираем на болтах детали, образующие узел поворота и стопо рения платформ (рис. 8, дет. 9-15 и 18, 19). Проверяем возможность поворота и стопорения платформ узлов мачты и основания, после чего детали, закрепленные болтами на платформах, обвариваем. Для окончательной сборки к платформе узла основания приваривают ноги, к которым ранее были приварены пластины (рис. 8, дет. 20 и 21).

Для того чтобы мачта стояла строго вертикально, необходимо, чтобы верхняя плоскость платформы узла мачты, присоединенная к платформе узла основания и застопоренная болтами дет. 14, после установки и бетонирования должна быть в строго горизонтальном положении. Глубина котлована под установку узла основания зависит от глубины промерзания грунта. Формулы для определения глубины котлована представлены на рис. II.

Для установки узла основания необходимо выкопать котлован, глубина которого должна быть больше глубины промерзания.


Рис. 9. Этапы сборки молниеотвода


Это необходимо для того, чтобы во время замерзания и оттаивания грунта пучение не могло изменить вертикального положения мачты. В том случае, если грунты не подвергаются пучению (например, в случае водоненасышенных песчаных грунтов), глубина ямы может быть уменьшена до 1000 мм. Дно ямы должно иметь диаметр не менее 700 мм. На дно ямы укладывают слой бетона толщиной 150 мм. По истечении двух суток устанавливают узел основания в сборе с платформой узла мачты, размещают с помощью подкладок под ноги верхнюю плоскость платформы узла мачты в горизонт и фиксируют раствором положение узла основания, оставив в таком положении еще на трое суток. По истечении этого срока проверяют положение верхней плоскости платформы подвижного узла. Если оно не изменилось, заливают второй слой бетона толщиной 150 мм.

Такая фундаментальная заделка ног необходима для того, чтобы предотвратить возможность «выталкивания» ног, которое возможно даже в песчаных грунтах, так как вес всей конструкции не превышает 160 кг. По истечении 7-8 дней часть конструкции узла основания, выступающая над бетонной заливкой, должна быть покрыта двумя слоями битумной мастики, и после ее высыхания яму заполняют грунтом с утрамбовкой и сооружением отмостки, как это показано на рис. 10-III.

Приварка мачты к платформе является одной из наиболее ответственных операций, исправление которой практически невозможно.

К платформе (в месте приварки мачты) необходимо приварить муфту Ду-50. Приваренная муфта может обеспечить только положение мачты и ее удержание, но не обеспечивает ее перпендикулярность по отношению к платформе. Для обеспечения перпендикулярности необходимо, чтобы прямой уголок привариваемых косынок был проверен по слесарному угольнику и в случае необходимости доработан.

На мачту, уложенную на козлы, наворачивают платформу, мачту выставляют в горизонт, в угольнике освобождают место под приваренную муфту и закрепляют его на прихватках. Уровнем проверяют перпендикулярность платформы и мачты. Мачту с прихваченной платформой поворачивают на 180° и, убедившись, что перпендикулярность не нарушена, делают прихватку. Аналогичным образом устанавливают остальные косынки, после чего весь узел обваривают (рис. 9-1, 9-2, 9-3).


Рис. 10. Подъем и закрепление молниеотвода


Для соединения на петле узлов мачты и основания необходимо узел мачты подвесить на гаражной лебедке, как это показано на рис. 9-4, совместить отверстия и вставить ось (рис. 8, дет. 12).

Для подъема мачты необходима дополнительная съемная монтажная мачта. В качестве монтажной мачты используется труба Ду-50 (рис. 8, дет. 22). Длина выступающей части мачты за габариты платформы равна 4 м. Монтажную мачту к платформе крепят двумя стремянками (рис. 8, дет. 23), изготовленными из круглой стали диаметром 10 мм.

Монтаж одиночного стержневого молниеотвода содержит следующие технологические операции: подвешивание растяжек, подъем мачты и фиксирование ее в вертикальном положении, закрепление растяжек на якорях, натяжение растяжек и присоединение токоподвода от заземлителя к узлу мачты.
Верхние концы растяжек (рис. 8, дет. 24) крепят к кольцу с крючками, состоящему из трубы Ду-32 (дет. 25) с приваренными к ней тремя звеньями цепи, у которых срезаны с одной стороны закругленные части (дет. 26). Для предотвращения разгиба приваренных звеньев, сверху накладывают пластину (дет. 27), положение которой фиксируют тремя упорами (дет. 28).

К нижним концам растяжек приваривают шпильки с резьбой Ml2. Длина нарезанной части шпилек равна 150-200 мм. Шпильки пропускают через отверстия в швеллерах якоря (дет. 30). Для предотвращения деформации шпилек под гайку под-кладывают фигурные шайбы, изготовленные из трубы Ду-15 (дет. 29).
Якорь состоит из швеллера (дет. 30) любого номера, но желательно не менее № 10, и приваренной к нему поперечины того же профиля, длина которой 0,6-0,8 м. Для установки якоря необходимо отрыть котлован на глубину 0,5 м, забить швеллер, как это показано на рис. 8, после чего засыпать котлован грунтом с утрамбовкой последнего.
Вес растяжек при определении сил, действующих во время подъема, не учитывался ввиду его малой величины.

По окончании подъема и установки мачты в строго вертикальном положении, растяжки присоединяют к якорям и натягивают. Натяжение растяжек должно быть одновременным и равномерным, о чем можно судить по величине провиса каждой из них. В окончательном виде растяжки должны иметь небольшой, но одинаковый провис, что свидетельствует о равномерности натяга.

Подъем мачты производят с помощью лебедки, установленной в 15 м от молниеотвода и закрепленной на якоре, как это показано на рис. 10. Конструкция якоря с исполнительными размерами представлена на рис. 10-I. Учитывая, что якорь может быть использован в дальнейшем, например, при прокрашивании мачты, которое должно проводиться один раз в 3-5 лет, его сохраняют столько времени, сколько будет эксплуатироваться молниеотвод. Поэтому якорь нужно сооружать из металла, окрашивать битумной мастикой, что позволяет ему длительное время не терять прочности. Предлагаемая конструкция якоря этим требованиям отвечает.

Общая длина гибкой связи между лебедкой и мачтой составляет около 26 м, из которых во время подъема на барабан лебедки будет наматываться только 8 м троса. Из этого следует, что могут быть использованы строительные лебедки или ручные червячные детали, рассчитанные на высоту подъема 9 или 12 м. Из рис. 10 видно, что часть гибкой связи может быть выполнена не тросом, а звеном из проволоки, которое будет постоянно закреплено на мачте. При вертикальном положении мачты, нижнее кольцо звена будет находиться в двух метрах от земли, что облегчит отсоединение и присоединение троса.
Звено из проволоки представлено на рис. 10-V и 10-VI.

Можно использовать любой стальной трос, диаметр которого не менее 8 мм. Петли на тросе образуют с помощью зажимов, представленных на рис. 10-IV.
Количество зажимов при образовании петли должно быть не менее трех. Перед подъемом мачту устанавливают в наклонном положении, для чего необходимо на расстоянии 8 м от петли установить козел высотой в 1,75 м. В этом положении мачта будет находиться под углом 10° к горизонту.
Для определения правильности выбора параметров силовых элементов конструкции (троса, лебедки, оси, петель и др.) необходимо знать величины сил, действующих на эти элементы конструкции во время подъема мачты. С этой целью на рис. 10 представлено два положения мачты: в первоначальный момент подъема, когда мачта наклонена к горизонту под углом 10°, и в последующий, когда мачта поднята к горизонту под углом в 60°.

Сила натяжения троса Т будет распределяться на силу, действующую вдоль мачты М, и силу П, поднимающую мачту (направлена перпендикулярно к мачте).
Указанные силы, а также сила веса отдельных элементов конструкции, измеряются килограммами. Для определения этих сил произведем следующие вычисления.

Мачта состоит из пяти труб (рис. 8, дет. 1-5), каждая из которых имеет свой вес. Определим вес каждой детали мачты. В таблице 9 в колонках 2, 3, 4 и 5 представлен подсчет веса каждой детали, входящей в мачту. Длина каждой детали мачты указана на рис. 8, а вес одного погонного метра взят из справочников.

Промышленность выпускает трубы с различной толщиной стенки, рассчитанной на работу под разным давлением: легкие, обыкновенные и усиленные. Наиболее распространенными являются обыкновенные, вес которых и использован в расчетах. Точкой приложения силы веса каждой из рассмотренных деталей является центр ее симметрии - середина детали, а направление силы - вертикально вниз.

Сумма моментов сил, приложенных в направлении по часовой стрелке, складывается из произведений силы веса деталей на расстояние (плечо) от точки приложения силы до оси вращения.

Пример 5. Деталь мачты 5 имеет длину 5 м. Вес одного метра трубы - 4,38 кг. Вес всей трубы равен 4,38 х5 = 21,9 кг.

Точка приложения веса находится в середине трубы, то есть на расстоянии 2,5 м от оси вращения. Момент, образованный силой тяжести, равен 21,9 кг х 2,5 м = 54,75 кгм.

При подъеме мачты на 10° расстояние от оси вращения стало не 2,5, а 2,4 м и момент стал 21,9 кг х 2,4 м = 52,56 кгм. При подъеме мачты на 60° расстояние от оси вращения до центра тяжести стало 1,3 м и момент стал равен 21,9 кг х 1,3 м = 28,47 кгм. Моменты, образованные этой силой, направлены по часовой стрелке.

В колонках 6 и 7 таблицы 9 имеются подсчеты каждого из моментов, образуемых деталями мачты при ее наклоне на 10°, а в конце колонки 7 суммирован итог, равный 563,4 кгм.

В колонках 8 и 9 имеются аналогичные подсчеты каждого из моментов, образуемых деталями мачты при ее наклоне на 60°, а в конце колонки 9 суммирован итог, равный 288,07 кгм.

Подъем мачты производят, натягивая трос. Для того чтобы мачта пришла в движение (обозначим этим начало подъема), необходимо создать такое натяжение троса, чтобы момент, образуемый весом мачты, был меньше момента, создаваемого натяжением троса.

Определим силы П, Т и М в начале подъема, то есть при наклоне мачты на угол 10°.

Учитывая, что трос закреплен на расстоянии 10 м от оси вращения, сила, которая должна создать момент, равный 565,4 кгм, должна быть приложена в месте закрепления троса, направлена против движения часовой стрелки, перпендикулярно к мачте и равна П = 563,4 кгм: 10 м = 56,3 кг.

Зная силу П по величине и направлению, а силы Т и М по направлению, с помощью графических построений можно определить величины последних сил. Точность, с которой будут определены эти силы, зависит от масштаба построения (производить его лучше на миллиметровке).

Построение графика, подобно изображенному на рис. 9, целесообразно проводить в масштабе один метр в натуре - два сантиметра на чертеже, а построения для нахождения сил Т и М в масштабе 5 кг - один сантиметр на чертеже.

Для нахождения сил Т и М необходимо отложить в масштабе силу П и из конца этой силы провести линию, параллельную осевой линии мачты, до пересечения с линией направления троса. А из точки пересечения восстановить перпендикуляр к осевой линии мачты. В полученном прямоугольнике необходимо измерить длину сил, направленных вдоль троса (Т) и вдоль мачты (М) и с учетом масштаба установить величины этих сил. В разбираемом примере сила натяжения троса Т равна 160 кг, а сила, действующая вдоль мачты М, равна 140 кг. Таким образом, сила, действующая на трос, лебедку и якорь, равна 160 кг, на ось и болты крепления петель - 140 кг. Но трос выдерживает более 1500 кг, лебедка - более 250 кг, якорь - 500 кг, а усилие среза одного болта М12 равно 1300 кг (то есть в конструкцию заложен значительный запас).


Рис. 11. Определение глубины котлована под фундамент и определение длины ног


Аналогичным образом можно определить направление и величины этих сил при подъеме мачты на 60°, однако из анализа данных таблицы 9 следует, что наибольшее натяжение троса возникает в первоначальный момент, в силу чего такой расчет не требуется.

Перед окончанием подъема во избежание удара в момент соприкосновения платформ мачту необходимо удерживать за растяжки.

Подняв мачту и не ослабляя троса, закрепляют платформу с помощью болтов (рис. 8, дет. 14). Если мачта имеет небольшой наклон, положение ее можно исправить с помощью регулировки прокладками (рис. 8, дет. 11, 15). Болты крепления при этом ослабляют, а прокладки только вынимают, после чего производят присоединение растяжек к якорям и их натяжение.

Токоотвод служит для соединения молниеприемника с заземлителями. Все соединения токоотвода должны быть сварными. Частью токоотвода будет являться мачта с платформой. К ней приваривают токоотвод, идущий от заземлителей.

Для того чтобы приварка токоотвода к узлу мачты не разрушалась во время неоднократных подъемов и опусканий последней, рядом с местом приварки должно быть сделано двойное кольцо, как это показано на рис. 10-III. Диаметр токоотвода должен быть не менее 6 мм.

Заземлитель (в соответствии с ранее приведенным расчетом) должен состоять из трех электродов диаметром 12 мм, длиной 5 м, расположенных в заземляющем устройстве в ряд на расстоянии 5 м один от другого. Для сооружения заземляющего устройства необходимо откопать траншею глубиной около метра и длиной немного более 10 м. Для более легкого погружения в грунт концы электроводов отковывают на четыре грани, подобно сапожному шилу. А если необходимо пройти через твердые грунты (например, слой известняка), нужно приварить изношенное сверло несколько большего диаметра. Погружение электрода в грунт производят несильными ударами при постоянном проворачивании. После погружения конец электрода на длине 100 мм отгибают и к нему приваривают горизонтальный соединительный стержень.


Рис. 12. Стержневой электрод заземления: 1 - стержень; 2 - забурник


Электроды также могут быть изготовлены в соответствии с рис. 12. Электроды этого типа вворачиваются в грунт с помощью забурника, приваренного к концу электрода. В процессе погружения происходит разрыхление грунта вокруг электрода, в силу чего контакт электрода с землею ухудшается.
Отличительной особенностью сооружения молниезащитного устройства на металлической крыше является то, что она используется как молниеприемник. Все выступающие элементы строения, расположенные выше металлической крыши, должны иметь собственные молниеприемники, соединенные с токоотводом.


Рис. 13. Токоприемник печной трубы: 1 - печная труба; 2 - крыша; 3 - токоприемник


Молниеприемник печной трубы представлен на рис. 13, телевизионная антенна, установленная на металлической мачте, должна иметь заземление (металлическую мачту присоединяют к токоотводу), а для предохранения радиоустройств следует устанавливать грозовые переключатели и искроразрядники. При приближении грозы следует прекратить прием и заземлить антенну. Металлическая крыша строения должна быть соединена с заземляющим устройством с помощью то-коотвода, который прокладывают по коньку крыши и крепят к ней через каждые 15 м. Крепление токоотвода к крыше дома представлено на рис. 14. Спуски токоотводов с крыши должны располагаться в таких местах, чтобы к ним не могли прикасаться люди (например, вдали от крыльца, прикрытые кустарником и т.д.).

Заземлитель, перед присоединением его к системе молниезашиты, должен быть испытан.


Рис. 14. Крепление токоотвода к металлической крыше: 1 - металлическая крыша; 2 и 3 - пластины крепления; 4 - болты


Для измерения сопротивления заземляющих устройств выпускаются специальные приборы: МС-08 и М-416. При отсутствии их можно измерить сопротивление при помощи амперметра и вольтметра. Схема измерения представлена на рис. 15.

Как следует из схемы, кроме испытуемого заземлительного устройства, обозначенного Rx, необходимо на расстоянии 40 м от него установить вспомогательный заземлитель RB и на таком же расстоянии зонд Кз- Рекомендованные расстояния нужны для исключения взаимного влияния их полей растекания. В качестве зонда можно использовать небольшой штырь. Сопротивление заземлительного устройства определяется по формуле:

Где
V - напряжение, измеренное вольтметром;
J - ток в цепи.

Точность измерения тем выше, чем больше сопротивление обмотки вольтметра в сравнении с сопротивлением зонда R3, поэтому рекомендуется применять электростатический вольтметр.


Рис. 15. Схема измерения сопротивления заземляющего устройства при помощи амперметра и вольтметра: 1 - понижающий трансформатор; 2 - вольтметр; 3 - амперметр; R3 - зонд, Rx- испытуемое заземляющее устройство, RB - вспомогательное заземляющее устройство

Природа молний такова, что предугадать место и время удара атмосферного электричества практически невозможно. Существует огромное количество теорий о том, что происходит при ударе молнией в землю, но до конца прояснить ситуацию, несмотря на все заверения специалистов, пока не удается.

Единственным проверенным средством, помогающим уберечься от удара атмосферного разряда, является молниеотвод. Но нельзя делать конструкцию для защиты от удара молнии, не имея представления, как работает молниеотвод. Вместо эффективной защиты, можно только увеличить вероятность удара молнии. Эффективность простого устройства будет достаточно высока, если владелец дома точно представляет, как сделать молниеотвод в частном доме, чтобы отвести удар молнии и одновременно обезопасить себя от электрического разряда.

Что представляет собой система защиты от удара молний

Чаще всего знания о том, как работает молниеотвод, сводятся к нескольким общеизвестным фактам:

  • Молния ударяет во время прохождения грозового фронта над местностью с переменным рельефом или большим количеством деревьев, построек или плотной застройкой зданий и высотных объектов;
  • Металлические предметы, техника и строительное оборудование, вышки и высокие деревья чаще всего становятся объектом удара молнии;
  • Единственной возможностью безопасно компенсировать удар молнии является эффективное заземление молниеотвода.

В модели молнии принято, что электрический разряд начинается в грозовых облаках, и при ударе светящийся лидер направляется к поверхности земли. Принцип работы молниеотвода сводится к тому, чтобы переключить электрический удар на специальную проводную шину, отправляющую заряд молнии глубоко в землю.

К сведению! Для человека главным условием защиты от удара молнией является отсутствие гальванической связи с мокрым грунтом, сухая одежда, и главное — наличие рядом предметов, способных выполнить функции молниеотвода.

Сегодня даже школьник знает, из чего состоит молниеотвод фото. Самая простая конструкция защиты от удара молнии строится на основе трех базовых частей:

  • Молниеприемника или оголовника молниеотвода, на который и приходится удар электрического разряда молнии;
  • Токопроводящего контура из толстой стальной шины или нескольких медных проводов большого сечения;
  • Системы заземления удара и рассеивания разряда молнии.

Основным условием эффективной защиты от ударов молнии является правильный подбор сечения металла шины, установка молниеотвода на оптимальной высоте и безопасное обустройство заземления. Не стоит обольщаться простотой и даже примитивностью его устройства. При несоблюдении простейших правил стальной каркас и шина молниеотвода могут быть не менее опасными, чем собственно удар молнии.

Что происходит во время грозы и удара молнии

Процесс образования электрического разряда в землю достаточно сложен и плохо предсказуем. Даже современная техника и методы расчета не могут указать на место удара молнии. Поэтому принцип действия молниеотвода строится на так называемой инициализации или провокации разряда молнии.

С первыми признаками грозы за счет мощного электрического поля в воздухе над высокими объектами, антеннами и оголовками молниеотводов резко увеличивается количество положительных зарядов. Еще нет грозы и ударов молнии, а над верхушками уже скопились огромные облака из заряженных ионов. Источником стекающих вверх зарядов является поверхность земли.

Любой человек может даже почувствовать запах этих зарядов, всем известно, как перед грозой усиливается влажность, выразительнее становятся запахи растительности и сырой земли. Если коснуться своими руками молниеотвода, то можно испытать небольшой удар током.

Так как молниеотвод соединен с грунтом, то вокруг оголовка и шины молниеотвода скапливается самый большой потенциал зарядов, поэтому удар молнии приходится именно в металлические части защиты, а не в крышу или соседний дом.

В некоторых случаях молниеотводы и шины дополнительно оборудуют грозовыми разрядниками или вентильной защитой. По сути, это контур, согнутый из шины в виде кольца или эллипса с разрывом. По мере увеличения напряженности поля накопившийся заряд разряжается на контуре, тем самым уменьшает вероятность удара молнии именно в этот объект. В первую очередь подобными молниеотводами с вентильной защитой оборудуются объекты, для которых удары молнии могут привести к катастрофическим последствиям, например, хранилища топлива, трансформаторные подстанции или линии электропередач

Как построить безопасный молниеотвод своими руками

В том, что система защиты от удара молнии может представлять огромную опасность для жизни человека, электронных приборов, систем электроснабжения и даже для просто находящихся рядом людей и животных, нет ни капли преувеличения.

Какую опасность представляет неправильно построенный молниеотвод

Во время удара молнии в оголовок приходит электрический заряд 150-200 Кл или несколько сот киловатт электроэнергии. Этого достаточно, чтобы пережечь стальную шину защиты сечением в 100-150 мм 2 или зажечь стропильный каркас крыши, испарить 200-250 литров воды. После удара молнии пришедшие заряды в молниеотводе никуда не деваются, на какую-то тысячную долю секунды система защиты работает, как гигантский конденсатор.

Важно! Стоит помнить, что энергия в сотни киловатт не может рассеяться в доли секунды после удара лидера молнии. Еще как минимум 3-5 сек. система разряжается. Если в это время коснуться частей молниеотвода рукой, то удар током может привести к тяжелым последствиям.

Если заземление молниеотвода построено правильно, то практически вся энергия заряда молнии стекает в поверхностный слой грунта. Процесс стекания заряда очень сложен, и точно сказать, как именно будут двигаться заряды от оголовника до заземляющей части молниеотвода, практически невозможно. Если токопроводящая шина обладает повышенным сопротивлением движению зарядов, то часть энергии может разрядиться на проходящую рядом электропроводку, телефонные линии, металлические детали крыши и каркаса здания.

Электричество может пройти даже по арматуре железобетона или мокрой штукатурке. В результате удара молнии может произойти скачок напряжения в электросети, возгорание деревянных или пластиковых деталей здания. Если в момент электроразряда произойдет перегорание шины, то ток пойдет в землю по всем ближайшим проводящим поверхностям, даже если нет непосредственного контакта с заземляющим проводником.

Еще более тяжелые последствия могут наступить, если рядом с шиной и металлом заземления находится человек. Даже если шина и заземляющая часть молниеотвода исправны, часть заряда молнии разряжается через влажный воздух и ближайшие проводящие детали. Последствия для человека могут быть такими же, как если бы он стоял под деревом, в которое пришелся удар молнии.

Кроме того, в момент распространения разряда в грунте на доли секунды возникает шаговое напряжение, представляющее не меньшую опасность, чем собственно сам электрический разряд. Поэтому пешеход, двигаясь по дорожке в непосредственной близости к контуру заземления, имеет все шансы получить сильнейший электрический разряд. Статистика знает случаи, когда во время удара молнии боковой разряд перескакивал с шины на металлические детали зонтика.

Требования к обустройству эффективного заземления молниеотвода

Суть шагового напряжения сводится к следующему. Стекающий по шине заряд от молниеотвода к заземлителю входит в грунт практически в одной точке, в которой создается самый высокий электрический потенциал, по мере удаления величина электрического напряжения сильно уменьшается. Человек, делая шаг вблизи шины, попадает в ситуацию, когда каждая нога находится под своим потенциалом. В результате от одной ступни к другой начинает течь ток, и человек получает сильнейший удар.

Поэтому первое требование эффективного молниеотвода относится к обустройству заземляющей части. Рассеивающий контур должен строиться по следующим правилам:

  • Конструкция заземления выполняется в виде замкнутого контура сечением не менее 4х4 см, чаще всего треугольной или прямоугольной формы с длиной стороны 1,5-2 м;
  • Контур приваривают к токоведущей шине только с помощью сварки. Если шина изготовлена из меди или алюминия, то на высоте не менее 30-40 см над уровнем грунта необходимо установить переходник «медь-сталь» или «алюминий-сталь»;
  • Глубина погружения контура составляет от 70 до 100 см, в зависимости от влажности и сопротивления грунта.

Оголовок молниеотвода

Более распространенные типы молниеотводов изображены на схемах, приведенных ниже. Идеальный вариант молниеотвода в частном доме должен изготавливаться в виде отдельно стоящей вышки или штанги, высотой равной полуторному расстоянию от грунта до конька жилого помещения.

Чем выше установлен молниеотвод, тем большую площадь поверхности он обеспечивает защитой от поражения электрическим разрядом. Но на практике редко кто решается сделать такой молниеотвод в частном доме своими руками, так как бытует заблуждение, что штанга выше 12 м будет «собирать» все удары молний в округе.

Большинство специалистов рекомендует поднимать молниеотвод на высоту до 18-20 м, особенно если здание находится в плотной застройке частного сектора. Это обеспечит защищаемую площадь в виде круга радиусом 15-20 м, что для одного домовладения вполне достаточно.

Кроме штанги, широко используются виды молниеотводов, устанавливаемые на коньковую балку или трубу дымохода, с дополнительной разводкой медной шиной по коньку и слуховым окнам. Такая схема защиты от ударов молнии бывает достаточно эффективной, особенно если в качестве кровельного покрытия крыши используется металлочерепица или профнастил.

Диаметр штыря молниеотвода может быть от 15 до 25 мм, лучше всего использовать нержавеющую сталь или легированный металл. Для оголовка нет смысла использовать латунь, медь, алюминий. При ударе молнии возникает локальный перегрев металла молниеотвода, иногда с искрами и разбрызгиванием капелек металла. Любая такая капля может стать инициатором стекания заряда на металлическую кровлю или, еще хуже, привести к пожару.

Если на крыше установлены несколько выступающих труб и конструкций, то нужно будет устанавливать несколько стержней молниеотводов, или использовать универсальную систему защиты от ударов молний.

Токопроводящая шина молниеотвода

В задачу проводной шины входят не только функции «сброса» электрического заряда к заземляющему и рассеивающему контуру. Прежде всего, требуется вывести шине электрический разряд безопасно для постройки и людей, случайно оказавшихся рядом с домом.

Специалисты определяют несколько базовых требований к прокладке токопроводящей шины:

  • Укладка шины выполняется без загибов под острым углом и тем более поворотов под углом 180 о. Любые петли и витки в спуске могут привести к возникновению мощного дугового разряда и перегоранию шины. В этом случае следующий удар молнии в молниеотвод может уничтожить крышу и само здание;
  • Шина должна соединяться с заземлением и оголовком молниеотвода только сваркой, без использования любых болтовых соединений, хомутов и стяжек. Даже незначительное повышение местного сопротивления шины приводит к ее локальному перегреву и оплавлению. Особенно опасна ситуация, когда токоведущая шина сваривается из нескольких лент разнородного материала;
  • Крепление токопровода по возможности должно выполняться с использованием петель и хомутов из диэлектрических материалов, например, стеклопластика. Исключением является ситуация, когда медные шины «разводятся» по поверхности металлической кровли.

Для токопроводящей шины обычно используют ленты из черного металла или меди. Наилучшим вариантом считается медная электротехническая шина диаметром не менее 8 мм, она выдержит любой удар молнии. Можно изготовить токоведущую линию из толстой алюминиевой катанки, диаметром не менее 12 мм. Например, использовать элементы насыпной обмотки мощного электродвигателя.

Немаловажным является также способ крепления шины и деталей молниеотвода.

Типовые конструкции молниеотводов

Для защиты частного дома используется несколько видов молниеотводов, используемых при построении комплексной грозовой защиты.

Типовая схема такой защиты приведена на рисунке. В состав защиты входят:

  • Несколько приемных оголовков-штырей молниеотводов, рассредоточенных на наиболее уязвимых точках кровли;
  • Разводка токопроводящей шиной по коньковой балке, ветровым планкам и скатам кровли. Как показывает практика, молния нередко поражает массивные металлические поверхности, находящиеся ниже молниеотвода;
  • Система комплексного заземления, при этом контур от молниеотвода не должен соединяться с заземляющей линией электропроводки, в противном случае сгорит большая часть домашней техники;
  • Устройство для защиты домашней аппаратуры и электросети при ударе молнии в линию электропередач.

Нередко токопроводящая шина становится источником проблем для домашней электросети. Во время удара молнии по шине протекает мощный импульс тока, способный вывести из строя цифровую технику, мобильный телефон, компьютер или сетевое оборудование интернета.

Поэтому перед тем как сделать молниеотвод, будущую линию укладки шины нужно обязательно экранировать. Для этого используется металлическая сетка с ячейкой не более 5 мм. Если шину молниеотвода предполагается уложить по бетонной или кирпичной стене, то сетку укладывают под штукатурку, и изолируют от шины. К экранирующей сетке припаивается провод, который подключается через вентильную защиту к общей системе заземления, но не к контуру молниеотвода.

Варианты построения защиты от удара молнии

Установка мачты с молниеотводом позволяет защищать большую часть придомовой территории. Для загородных дачных участков схема защиты от удара молнии не решает всех проблем. Особенно если учесть, что расстояние между постройками может составлять 40-50 м, высота защитной мачты в этом случае должна достигать нереальных 40-60 м. Поэтому все загородные постройки в обязательном порядке приходится оборудовать своими молниеотводами и системами защиты от ударов молнии.

Простейшая схема молниеотвода приведена на следующем рисунке.

Штырь или оголовок молниеотвода устанавливают на кирпичную трубу. Общая высота молниеотвода в верхней точке должна равняться величине диагонали коробки дома, умноженной на коэффициент 1,2.

Важно! Контур заземления молниеотвода должен находиться на расстоянии не менее 4-5 м от пешеходных дорожек или входа в дом.

Заземляющую шину пропускают по ветровой планке и «слепому» ребру здания. Если есть возможность, то шину лучше всего пустить в навесном варианте без крепления к коробке дома.

Для построек удлиненной формы приходится использовать защиту от удара молнией из нескольких штырей или устанавливать проволочный вариант молниеотвода, как на фото.

В этом случае молниеотводы устанавливаются только на фронтонах, а между ними натягивается толстая стальная проволока или трос, диаметром не менее 8 мм. Чтобы ветер не раскачивал систему молниеотвода, провод натягивают с помощью двух боковых подвесов из керамических изоляторов и пластиковых шнуров. Использование изоляторов обеспечивает правильную работу молниеотвода, без них электрический заряд от удара молнии способен стекать на землю по намокшему от дождя капроновому канату.

Третий вариант молниеотвода применяется для защиты кровельного покрытия крыши от прямого попадания молнии. Зачастую длина скатов крыши может превышать высоту дома в два и более раз, поэтому часть кровельного покрытия оказывается за пределами защищаемого круга. Если устанавливать дополнительные штыри по карнизу и на свесах, то это решит проблему, но серьезно повлияет на внешний вид здания, поэтому вместо штыревого молниеотвода устанавливают сетчатый.

Схема мало чем отличается от предыдущего варианта, в дополнение к тросу и стальным стержням на скатах закрепляют с шагом 4-6 м несколько горизонтальных и вертикальных ниток толстой многожильной проволоки. Если кровля изготовлена из металла, сетку молниеотвода нужно обязательно изолировать от металлической поверхности с помощью резиновых прокладок.

При ударе молнии диаметр пятна теплового поражения достигает 15-20 см, поэтому прямое попадание лидера, например, в металлочерепицу приведет к воспламенению обрешетки и гидроизоляции крыши.

Строим своими руками

Любое строительство грозовой защиты дома начинается с наиболее трудоемкой его части - с заземляющего контура. Схема постройки заземляющей части молниеотвода приведена ниже на чертеже.

Заземление удара молнии

Первоначально потребуется уточнить уровень грунтовых вод около фундамента дома. Если в здании есть погреб или подвальное помещение, регулярно затапливаемое водой, первоначально нужно будет сделать дренаж и защиту от влаги со стороны укладки металлического контура и шины.

Для плитных фундаментов и МЗЛФ котлован под заземляющий контур можно сделать в непосредственной близости к бетонной ленте или плите. В других случаях место под траншеи нужно перенести на 2-3 м от отмостки.

На первом этапе роем треугольную траншею с длиной стороны 300 см. Ширина траншеи не имеет значения, оптимальная глубина составляет 70-90 см. Для каменистых и песчаных грунтов траншею можно углубить по максимуму, для суглинка достаточно 70 см. Иногда под укладку деталей заземления отсыпают подушку из песка и отсева. Такой подслой хорошо впитывает воду из грунта, что обеспечивает малое сопротивление контура.

Металлический контур заземления должен изготавливаться в виде замкнутой рамы, такая конструкция обеспечивает наилучшее рассеивание заряда. Если на доме установлено три-четыре штыревых молниеотвода, каждый с заземляющей шиной, все токоведущие детали необходимо соединить одним контуром с помощью стальной ленты. Это позволяет выровнять потенциал и предупредить перетекание заряда в грунте.

Наиболее подходящий материал для контура - стальной уголок №50 или профилированная квадратная труба 70х40 мм. После сварки основных деталей рамы к одной из сторон приваривается контактная полоса, которая будет выводиться на поверхность. Если грунт слишком сухой, вместо полосы можно приварить дюймовую трубу, через которую удобно заливать рассол или воду. В летние месяцы, если нет дождей более 4-5 недель, нужно периодически увлажнять песчаную подушку, чтобы сопротивление грунта на входе на шину не увеличивалось.

К сведению! Металл заземляющего прямоугольника нельзя красить или обрабатывать защитными покрытиями, уменьшающими проводимость поверхности.

После установки каркаса в вырытую траншею металл проливают соленой водой и засыпают влажной землей. На поверхности можно сделать отсыпку из щебня и уложить тротуарную плитку, чтобы уменьшить гальваническую связь и риск появления шагового напряжения. Делать бетонную стяжку нет смысла, так как через 10 лет придется сделать замену частей молниеотвода, и бетон будет лишней помехой в работе.

Если уровень грунтовых вод достаточно низкий, то для контура молниеотвода потребуется пробурить несколько скважин диаметром 5-6 см на глубину до 2-3 м. Не обязательно бурить до воды, главное — достать до влажных слоев земли. В скважины вставляют металлические трубы, верхние части которых обязательно приваривают к общему контуру и к шине.

Отвод от контура заземления, как правило, прячут в стеновой нише цоколя или специальном боксе. Туда же заводят шину молниеотвода. После сборки все металлические части тщательно изолируют, чтобы избежать случайного касания шины со стороны людей или животных.

Наиболее подробное описание строительства молниеотвода в частном доме своими руками приведено на видео https://www.youtube.com/watch?v=0K6SNX1avXA.

Выполняем монтаж штыревого приемника и шины

Самая простая конструкция оголовка молниеотвода выглядит, как обычный кусок арматуры с заостренным кверху концом. Считается, что острые края способствуют возникновению разряда и большей эффективности молниеотвода, но на практике особых преимуществ в защите от удара молнии перед обычными штырями не наблюдалось.

Оголовок молниеотвода может выполняться в виде нескольких штырей, закрепленных в одной раме и даже в виде сетчатого каркаса. Некоторые конструкции молниеотводов позволяют в ночное время наблюдать интересное явление - при приближении грозы на остриях начинают зажигаться крошечные разряды молний. Это означает, что скоро будет гроза.

Штырь молниеотвода нужно соединить с токоведущей шиной еще до его установки на крыше. Высота стержня молниеотвода должна быть как минимум на 100-120 см выше верхней точки рядом стоящих дымоходов и вентиляционных труб. Можно взять обычную водопроводную трубу ¾ дюйма, длиной не менее двух метров.

В верхней части молниеотвода отверстие заваривается сваркой, если токоотводящая шина планируется из меди или алюминия, то проще всего использовать электротехнический переходник, позволяющий надежно соединять два контакта из разнородных металлов. Если просто закрепить медную проволоку на стальном штыре, через две-три недели из-за электрохимической коррозии место крепления окислится, и защита от ударов молнии перестанет работать. Молниеотводы и шины промышленного изготовления никогда не красят, металл фосфатируется и покрывается слоем никеля.

Разумеется, увеличенное сопротивление на контакте в месте крепления медной шины к стальной трубе не в состоянии остановить сверхсильный удар молнии, но речь идет о другом. Положительно заряженные частицы, которые скапливаются вокруг штыря молниеотвода во время грозы, из-за отсутствия контакта на шине будут перетекать на дымоход и козырьки вентиляции на крыше. В результате удары молнии будут попадать в дымоход, в кровлю и в шину, но не в штырь молниеотвода. Эффект ионизации воздуха вокруг молниеотвода имеет и другие негативные последствия. Прежде всего, шина и крепление молниеотвода под воздействием ионов и влажного воздуха корродирует в 5-10 раз быстрее, чем обычный металл.

После сварки штыря и шины молниеотвода их следует закрепить на крыше. Лучше всего это сделать с помощью хомутов или анкерными болтами. Нужно только следить, чтобы рядом с шиной не оказалось других проводящих деталей, например, кабеля от антенны или ограждения крыши. Не стоит крепить шину молниеотвода на неоштукатуренный кирпич или железобетонную плиту. Удар молнии, как правило, быстро разрушает оба материала.

Прежде чем закрепить молниеприемник, нужно установить шину на стены и крышу дома. Главное, чтобы рядом не оказался ввод электросети от ближайшей линии электропередачи. При ударе молнии дуга может проскочить от шины к фазовому проводу, даже если они удалены друг от друга на пару десятков сантиметров. Кроме сгоревшего счетчика и вводного щита, будет крупный штраф за неправильную установку молниеотвода и шины.

Заключение

Молниеотвод не обязательно делать своими руками, можно приобрести в готовом виде и установить. Многие компании выпускают системы защиты от ударов молний в комплекте с шинами и устройствами блокирования бытовой аппаратуры. Некоторые из них имеют встроенные датчики напряженности поля на шине, что позволяет узнавать о приближении грозы за полчаса до ее начала. Часть молниеотводов выполняют в виде декоративных фигур из металла, зажигающихся огоньками при ударе молнии. Но есть и немало случаев откровенного шарлатанства. Например, в рекламе одной из фирм предлагалась миниатюрная модель с покрытием из специального магнитного сплава, притягивающего молнии к оголовку. Понятно, что такие молниеотводы ради собственной безопасности стоит обходить стороной.

Молниеприемник непосредственно воспринимает прямой удар молнии. Поэтому он должен надежно противостоять механическим и тепловым воздействиям тока и высокотемпературного канала молнии. Несущая конструкция несет на себе молниеприемник и токоотвод, объединяет все элементы молниеотвода в единую, жесткую, механически прочную конструкцию. В электроустановках молниеотводы устанавливаются вблизи токоведущих частей, находящихся под рабочим напряжением. Падение молниеотвода на токоведущие элементы электроустановки вызывает тяжелую аварию. Поэтому несущая конструкция молниеотвода должна иметь высокую механическую прочность, которая исключила бы в эксплуатации случаи падения молниеотвода на оборудование электростанций и подстанций. Молниеотвод должен иметь надёжную связь с землёй с сопротивлением 5-25 Ом растеканию импульсного тока. Защитное свойство стержневых молниеотводов заключается в том, что они ориентируют на себя лидер формирующегося грозового разряда. Разряд происходит обязательно в вершину молниеотвода, если он формируется в некоторой области, расположенной над молниеотводом. Эта область имеет вид расширяющегося вверх конуса и называется зоной 100%-го поражения.

Опытными данными установлено, что высота ориентировки молнии H зависит от высоты молниеотвода h. Для молниеотводов высотой до 30 метров:

а для молниеотводов высотой более 30 метров H=600 м.

где - активная часть молниеотвода, соответствующая его превышению над высотой защищаемого объекта:

Рисунок 1.1 Зона защиты одиночного стержневого молниеотвода: 1 - граница зоны защиты; 2 - сечение зоны защиты на уровне.

Для расчёта радиуса защиты в любой точке защитной зоны, в том числе и на уровне высоты защищаемого объекта, используется формула:

где - поправочный коэффициент, равный 1 для молниеотводов высотой меньше 30 метров и равный для более высоких молниеотводов.

Зоны защиты протяженных объектов в которых используется несколько молниеотводов, целесообразно, чтобы зоны их 100%-го поражения смыкались над объектом или даже перекрывали друг друга, исключая вертикальный прорыв молнии на объект защиты Расстояние (S) между осями молниеотводов должно быть равно или меньше величины, определяемой из зависимости:

Зона защиты двух и четырёх стержневых молниеотводов в плане на уровне высоты защищаемого объекта имеет очертания, приведённые на рисунке 1.3, а, б.

Наименьшая ширина зоны защиты, показанный на чертеже радиус защиты определяется так же, как и для одиночного молниеотвода, а определяется по специальным кривым. На рисунке 1.2 показаны конструкции стержневых молниеотводов. Если у молниеотводах высотой до 30 метров, расположенных на расстоянии, наименьшая ширина зоны защиты равна нулю.

Рисунок 1.2 Конструкции стержневых молниеотводов на железобетонных опорах: а -из вибрированного бетона; б - центрифугированного бетона

Рисунок 1.3 Стержневые молниеотводы на металлических опорах: а - тросовый молниеотвод (несущая конструкция); б - стержневой молниеотвод (несущая конструкция)

На рисунке 1.3 показаны конструкции стержневых молниеотводов на металлических опорах. Радиусы защиты определяются в этом случае так же, как и для одиночных молниеотводов. Размер определяется по кривым для каждой пары молниеотводов. Диагональ четырёхугольника или диаметр окружности, проходящей через вершины треугольника, образованного тремя молниеотводами, по условиям защищённости всей площади должны удовлетворять зависимости:

Для молниеотводов высотой меньше 30 м:

Для молниеотводов высотой более 30 м:

Отдельно стоящие стержневые молниеотводы с металлическими опорами устанавливаются на железобетонных фундаментах. Токоотводамп для таких молниеотводов служат несущие конструкции. На металлических и железобетонных конструкциях ОРУ, как правило, устанавливаются молниеотводы с металлическими несущими частями. Конструкция их крепления определяется особенностями той конструкции ОРУ, к которой крепится стержневой молниеотвод. Обычно конструкция молниеотводов, устанавливаемых на конструкциях ОРУ, представляет собой стальную трубу, нередко состоящую из труб нескольких диаметров. Молниеотводы высотой более 5 м в основании имеют решетчатую конструкцию из угловой стали. Потенциал на молниеотводе в момент разряда определяется зависимостью:

где - импульсное сопротивление заземления молниеотвода 5-25 Ом;

Ток молнии в хорошо заземлённом объекте.

Потенциал на молниеотводе определяется:

где - крутизна фронта волны тока;

  • - точка молниеотвода на высоте объекта;
  • - удельная индуктивность молниеотвода.

Для расчёта минимального допустимого приближения объекта к молниеотводу можно исходить из зависимости:

где - допустимая импульсная напряжённость электрического поля в воздухе, принимаемая 500 кВ/м.

Руководящие указания по защите от перенапряжений рекомендуют расстояние до молниеотвода принимать равным:

Эта зависимость справедлива при токе молнии, равным 150 кА, крутизне тока 32 кА/мксек и индуктивности молниеотвода 1,5 мкГн/м. Независимо от результатов расчёта, расстояние между объектом и молниеотводом должно быть не менее 6 метров.

Тросовый молниеотвод. Значения коэффициентов k и z берутся в зависимости от допускаемой вероятности прорыва молнии в зону защиты. Вероятность прорыва молнии в зону защиты равна отношению числа разрядов молнии в защищаемое сооружение к общему числу разрядов молнии в молниеотвод и защищаемое сооружение. Если допускается вероятность прорыва молнии в зону защиты 0,01, то коэффициент 1, а при допускаемой вероятности 0,001, т. е. защитные зоны тросовых молниеотводов несколько меньше защитных зон стержневых молниеотводов. Форма зоны защиты двух параллельных тросовых молниеотводов высотой до 30 м. Внешние границы зоны защиты каждого троса определяются так же, как и для одиночного тросового молниеотвода. В зависимости от конструкции опор, могут быть применены один или два троса, наглухо присоединённые к металлической опоре или к заземляющим металлическим спускам деревянных опор. Для предохранения троса от пережога током молнии и контроля заземления опоры крепления троса производится с помощью одного подвесного изолятора, шунтированного искровым промежутком. Эффективность тросовой защиты тем выше, чем меньше угол, образованный вертикалью, проходящей через трос, и линией, соединяющей трос с крайним из проводов. Этот угол называют защитным углом, принимая его величину в пределах

Зона защиты двух тросовых молниеотводов высотой более 30 м. Метод построения зоны защиты для этого случая такой же, как и для тросовых молниеотводов высотой до 30 м, но на расстоянии от вершины зона усекается так же, как у одиночных тросовых молниеотводов. Ширина защитной зоны, исключающей прямое поражение проводов на уровне высоты их подвеса, определяется зависимостью:

Эта зависимость справедлива для высоты подвеса троса 30 м и ниже.

Нужен ли громоотвод? Этим вопросом задается не один владелец частного дома, ведь разряд молнии может стать причиной выхода из строя всей бытовой техники или, еще хуже, пожара. Если дом расположен в поселке или городе в окружении себе подобных, то в громоотводе нет необходимости. Напротив, он может притягивать электрические разряды. Если же дом одиноко стоит в поле или на большом участке, возвышается на пригорке, а климат летом жаркий и сухой, с частыми грозами, то громоотвод просто необходим.

Устройство громоотвода

Первый громоотвод сконструировал Бенджамин Франклин, который, по совместительству, был не только президентом Америки, но и изобретателем. С тех пор конструкция этого приспособления не особенно изменилась, так как справляется со своей задачей оно хорошо. Громоотвод состоит из трех частей, соединенных между собой.

  • Молниеприемник – самый заметный элемент, представляющий собой длинный стержень из алюминия, меди, стали или другого хорошо проводящего ток металла. Он крепится или вне его с таким учетом, чтобы верхняя точка возвышалась над крышей. Толщина молниеприемника зависит от металла, для стали это 50 мм кв., для меди – 35 мм кв. Возможна и конструкция в виде троса, натянутого над коньком по всей его длине, она считается более безопасной. И трос, и штырь должны опираться на деревянные подпорки. Металлическая крыша без защитного полимерного покрытия сама по себе может являться молниеотводом, но в этом случае ее необходимо хорошо изолировать изнутри. Такое устройство крыши оговаривается еще на стадии проектирования, так как выбираются материалы достаточной толщины, и сама конструкция имеет ряд особенностей.
  • По токоотводу заряд от молнии уходит в землю. По сути, это провод, соединяющий молниеприемник с заземлителем. Толщина его зависит от материала и длины, так как он должен кратковременно справляться с нагрузкой в 200 тыс. ампер. Лучше всего подойдет медный провод сечением не менее 6 мм кв.
  • Заземлитель – контур, по которому напряжение разряда передается в землю. Обычно он изготавливается из медных или стальных прутьев, диаметр которых зависит от их длины, вкопанных в землю. Не стоит использовать в качестве заземлителя для молниеотвода трубы водопровода или иных коммуникаций или контур заземления от электропроводки самого дома.

Громоотвод своими руками

Перед установкой громоотвода необходимо определиться с местом его размещения – будет ли это крыша дома или площадка на участке. Отдельно стоящая конструкция потребует большего расхода материала, но, при установке на границе участков, может защищать два и более домовладения. Такой громоотвод должен превышать самую высокую точку крыши на 2 метра.

Молниеприемник устанавливается на вышку, которая может быть изготовлена из трубы подходящего диаметра. Внутри нее будет проходить токоотвод, поэтому материал трубы должен служить изолятором, сверху хомутами крепится медный, стальной или алюминиевый стержень. Токопровод приваривается к приемнику.

Провод на тех участках, где он не будет защищен трубой, можно спрятать в гофру, чтобы уберечь от коррозии. Вышка вкапывается в землю на глубину 2-х метров, дополнительно ее можно зафиксировать подпорками, закрепленными на хомуте.


Если молниеприемник расположен на крыше, то он должен возвышаться над ее верхней точкой на 30 см. В этом случае токопровод прокладывают так, чтобы он не проходил около окон или дверей, до ближайших металлических конструкций (лестниц, водостоков) должно быть не менее 30 см. Кабель не должен иметь резких изгибов или прямых углов, так как в этих местах высока вероятность появления искровых разрядов. К стене он крепится пластиковыми хомутами на дюбели.

Выбирать место расположения заземления нужно с учетом того, что до ближайшего входа в дом или иные постройки должно быть не менее 3 метров, а от стен не менее метра. В этом месте выкапывают траншею длиной 3 метра и глубиной 1-1,5 метра. В ее концах забивают на глубину в 2 метра стержни из меди сечением 50 мм кв. или стали сечением 80 мм кв. (подойдет некрашеная арматура), соединяют их, приварив прут из того же материала. К контуру приваривают провод токоотвода и траншею вновь засыпают землей.

Возведение громоотвода на участке или на крыше потребует времени, навыков сварки и материальных затрат. Однако потери, которые могут произойти за доли секунды при попадании молнии в дом, ощутимо серьезнее.

Стоит помнить, что правильно сконструированный и установленный громоотвод будет эффективен лишь при установке в доме УЗО и ограничителей напряжения.