Как найти значение параметра а. Системы уравнений с параметром. Параметр как равноправная переменная

В последние годы на вступительных экзаменах, на итоговом тестировании в форме ЕГЭ предлагаются задачи с параметрами. Эти задачи позволяют диагностировать уровень математического и, главное, логического мышления абитуриентов, способность осуществлять исследовательскую деятельность, а также просто знание основных разделов школьного курса математики.

Взгляд на параметр как на равноправную переменную находит своё отражение в графических методах. В самом деле, поскольку параметр “равен в правах” с переменной, то ему, естественно, можно “выделить” и свою координатную ось. Таким образом, возникает координатная плоскость . Отказ от традиционного выбора букв и для обозначения осей, определяет один из эффективнейших методов решения задач с параметрами – “метод областей”. Наряду с другими методами, применяемыми при решении задач с параметрами, я знакомлю своих учеников и с графическими приёмами, обращая внимание на то, как распознать “такие” задачи и как выглядит процесс решения задачи.

Самые общие признаки, которые помогут узнавать задачи, подходящие под рассматриваемый метод:

Задача 1. “При каких значениях параметра неравенство выполняется при всех ?”

Решение. 1). Раскроем модули с учётом знака подмодульного выражения:

2). Запишем все системы получившихся неравенств:

а)

б) в)

г)

3). Покажем множество точек, удовлетворяющих каждой системе неравенств (рис.1а).

4). Объединяя все области, показанные на рисунке штриховкой, можно заметить, что неравенству не удовлетворяют точки , лежащие внутри парабол.

На рисунке видно, что при любом значении параметра можно найти область, где лежат точки, координаты которых удовлетворяют исходному неравенству. Неравенство выполняется при всех , если . Ответ: при .

Рассмотренный пример представляет собой “открытую задачу” - можно рассмотреть решение целого класса задач, не изменяя рассмотренное в примере выражение, в которых технические трудности построения графиков уже преодолены.

Задача. При каких значениях параметра уравнение не имеет решений? Ответ: при .

Задача. При каких значениях параметра уравнение имеет два решения? Запишите оба найденных решения.

Ответ: , тогда , ;

Тогда ; , тогда , .

Задача. При каких значениях параметра уравнение имеет один корень? Найдите этот корень. Ответ: при при .

Задача. Решите неравенство .

(“Работают” точки, лежащие внутри парабол).

, ; , решений нет;

Задача 2.Найдите все значения параметра а , при каждом из которых система неравенств образует на числовой прямой отрезок длины 1.

Решение. Перепишем исходную систему в таком виде

Все решения этой системы (пары вида ) образуют некоторую область, ограниченную параболами и (рис 1).

Очевидно, решением системы неравенств будет отрезок длины 1 при и при . Ответ: ; .

Задача 3.Найдите все значения параметра , при которых множество решений неравенства содержит число , а так же содержит два отрезка длиной , не имеющие общих точек.

Решение. По смыслу неравенства ; перепишем неравенство, умножив обе его части на (), получаем неравенство:

, ,

(1)

Неравенство (1) равносильно совокупности двух систем:

(рис. 2).

Очевидно, интервал не может содержать отрезка длины . Значит, два непересекающихся отрезка длины содержатся в интервале Это возможно при , т.е. при . Ответ: .

Задача 4.Найдите все значения параметра , при каждом из которых множество решений неравенства содержит отрезок длиной 4 и при этом содержится в некотором отрезке длиной 7.

Решение. Проведём равносильные преобразования, учитывая, что и .

, ,

; последнее неравенство равносильно совокупности двух систем:

Покажем области, которые соответствуют этим системам (рис. 3).

1) При множество решений – это интервал длиной, меньшей 4. При множество решений – это объединение двух интервалов .Содержать отрезок длиной 4 может только интервал . Но тогда , и объединение уже не содержится ни в каком отрезке длиной 7. Значит, такие не удовлетворяют условию.

2) множество решений – это интервал . Он содержит отрезок длиной 4, только если его длина больше 4, т.е. при . Он содержится в отрезке длиной 7, только если его длина не больше 7, т. е. при , тогда . Ответ: .

Задача 5. Найдите все значения параметра , при которых множество решений неравенства содержит число 4, а также содержит два непересекающихся отрезка длиной 4 каждый.

Решение. По условия . Домножим обе части неравенства на (). Получим равносильное неравенство, в котором сгруппируем все члены в левой части и преобразуем её в произведение:

, ,

, .

Из последнего неравенства следует:

1) 2)

Покажем области, которые соответствуют этим системам (рис. 4).

а) При получаем интервал , не содержащий числа 4. При получаем интервал , также не содержащий числа 4.

б) При получаем объединение двух интервалов. Непересекающиеся отрезки длиной 4 могут располагаться только в интервале . Это возможно только в том случае, если длина интервала больше 8, т. е. если . При таких выполнено и другое условие: . Ответ: .

Задача 6. Найдите все значения параметра , при которых множество решений неравенства содержит какой-нибудь отрезок длиной 2, но не содержит никакого отрезка длиной 3.

Решение. По смыслу задания , умножим обе части неравенства на , сгруппируем все члены в левой части неравенства и преобразуем её в произведение:

, . Из последнего неравенства следует:

1) 2)

Покажем область, которая соответствует первой системе (рис. 5).

Очевидно, что условие задачи выполняется, если . Ответ: .

Задача 7. Найдите все значения параметра , при которых множество решений неравенства 1+ содержится в некотором отрезке длиной 1 и при этом содержит какой-нибудь отрезок длиной 0,5.

Решение. 1). Укажем ОДЗ переменной и параметра:

2). Перепишем неравенство в виде

, ,

(1). Неравенство (1) равносильно совокупности двух систем:

1)

2)

С учётом ОДЗ решения систем выглядят так:

а) б)

(рис. 6).

а) б)

Покажем область, соответствующую системе а) (рис. 7). Ответ: .

Задача 8. Шесть чисел образуют возрастающую арифметическую прогрессию. Первый, второй и четвертый члены этой прогрессии являются решениями неравенства , а остальные

не являются решениями этого неравенства. Найдите множество всех возможных значений первого члена таких прогрессий.

Решение. I. Найдём все решения неравенства

а). ОДЗ:
, т.е.

(учли в решении, что функция возрастает на ).

б). На ОДЗ неравенство равносильно неравенству , т.е. , что даёт:

1).

2).

Очевидно, решением неравенства служит множество значений .

II. Проиллюстрируем вторую часть задачи о членах возрастающей арифметической прогрессии рисунком (рис. 8 , где - первый член, - второй и т.д.). Заметим, что:

Или имеем систему линейных неравенств:

решим её графическим способом. Строим прямые и , а также прямые

То, .. Первый, второй и шестой члены этой прогрессии являются решениями неравенства , а остальные не являются решениями этого неравенства. Найдите множество всех возможных значений разности этой прогрессии.

При каких значениях параметра $a$ неравенство ${}-x^2 + (a + 2)x - 8a - 1 > 0$ имеет хотя бы одно решение?

Решение

Приведем данное неравенство к положительному коэффициенту при $x^2$:

${}-x^2 + (a + 2)x - 8a - 1 > 0 \quad \Leftrightarrow \quad x^2 - (a + 2)x + 8a + 1 < 0 .$

Вычислим дискриминант: $D = (a + 2)^2 - 4(8a + 1) = a^2 + 4a + 4 - 32a - 4 = a^2 - 28a$. Чтобы данное неравенство имело решение, необходимо, чтобы хотя бы одна точка параболы лежала ниже оси $x$. Так как ветви параболы направлены вверх, то для этого нужно, чтобы квадратный трёхчлен в левой части неравенства имел два корня, то есть его дискриминант был положительным. Мы приходим к необходимости решить квадратное неравенство $a^2 - 28a > 0$. Квадратный трехчлен $a^2 - 28a$ имеет два корня: $a_1 = 0$, $a_2 = 28$. Поэтому неравенству $a^2 - 28a > 0$ удовлетворяют промежутки $a \in (-\infty; 0) \cup (28; + \infty)$.

Ответ. $a \in (-\infty; 0) \cup (28; + \infty)$.

При каких значениях параметра $a$ уравнение $(a-2)x^2-2ax+a+3=0$ имеет хотя бы один корень, и при этом все корни положительны?

Решение

Пусть $a=2$. Тогда уравнение принимает вид ${} - 4x +5 = 0$ , откуда получаем, что $x=\dfrac{5}{4}$ - положительный корень.

Пусть теперь $a\ne 2$. Получается квадратное уравнение. Определим сначала, при каких значениях параметра $a$ данное уравнение имеет корни. Нужно, чтобы его дискриминант был неотрицателен. То есть:

$ D = 4a^2 - 4(a-2)(a+3) ={} -4a+24\geqslant 0\Leftrightarrow a\leqslant 6.$

Корни по условию должны быть положительны, следовательно, из теоремы Виета получаем систему:

$ \begin{cases}x_1 + x_2 = \dfrac{2a}{a - 2}>0,\\ x_1x_2 = \dfrac{a + 3}{a - 2}> 0,\\a\leqslant 6\end{cases} \quad \Leftrightarrow \quad \begin{cases}a\in(- \infty;0)\cup(2; +\infty), \\ a\in(- \infty;-3)\cup(2; +\infty), \\ a\in(-\infty;6] \end{cases}\quad\Leftrightarrow \quad a\in(-\infty;-3)\cup(2;6]. $

Объединяем ответы, получаем искомое множество: $a\in(-\infty;-3)\cup$.

Ответ. $a\in(-\infty;-3)\cup$.

При каких значениях параметра $a$ неравенство $ax^2 + 4ax + 5 \leqslant 0$ не имеет решений?

Решение

  1. Если $a = 0$, то данное неравенство вырождается в неравенство $5 \leqslant 0$ , которое не имеет решений. Поэтому значение $a = 0$ удовлетворяет условию задачи.
  2. Если $a > 0$, то график квадратного трехчлена в левой части неравенства - парабола с ветвями, направленными вверх. Вычислим $\dfrac{D}{4} = 4a^2 - 5a$. Неравенство не имеет решений, если парабола расположена выше оси абсцисс, то есть когда квадратный трёхчлен не имеет корней ($D < 0$). Решим неравенство $4a^2 - 5a < 0$. Корнями квадратного трёхчлена $4a^2 - 5a$ являются числа $a_1 = 0$ и $a_2 = \dfrac{5}{4}$, поэтому $D < 0$ при $0 < a < \dfrac{5}{4}$. Значит, из положительных значений $a$ подходят числа $a \in \left(0; \dfrac{5}{4}\right)$.
  3. Если $a < 0$, то график квадратного трехчлена в левой части неравенства - парабола с ветвями, направленными вниз. Значит, обязательно найдутся значения $х$, для которых трёхчлен отрицателен. Следовательно, все значения $a < 0$ не подходят.

Ответ. $a \in \left$ лежит между корнями, поэтому корней должно быть два (значит, $a\ne 0$). Если ветви параболы $y = ax^2 + (a + 3)x - 3a$ направлены вверх, то $y(-1) < 0$ и $y(1) < 0$; если же они направлены вниз, то $y(-1) > 0$ и $y(1) > 0$.

Случай I. Пусть $a > 0$. Тогда

$\left\{ \begin{array}{l} y(-1)=a-(a+3)-3a=-3a-3<0 \\ y(1)=a+(a+3)-3a=-a+3<0 \\ a>0 \end{array} \right. \quad \Leftrightarrow \quad \left\{ \begin{array}{l} a>-1 \\ a>3 \\ a>0 \end{array} \right.\quad \Leftrightarrow \quad a>3.$

То есть в этом случае получается, что подходят все $a > 3$.

Cлучай II. Пусть $a < 0$. Тогда

$\left\{ \begin{array}{l} y(-1)=a-(a+3)-3a=-3a-3>0 \\ y(1)=a+(a+3)-3a=-a+3>0 \\ a<0 \end{array} \right.\quad \Leftrightarrow \quad \left\{ \begin{array}{l} a<-1 \\ a<3 \\ a<0 \end{array} \right.\quad \Leftrightarrow \quad a<-1.$

То есть в этом случае получается, что подходят все $a < -1$.

Ответ. $a\in (-\infty ;-1)\cup (3;+\infty)$

Найдите все значения параметра $a$, при каждом из которых система уравнений

$ \begin{cases} x^2+y^2 = 2a, \\ 2xy=2a-1 \end{cases} $

имеет ровно два решения.

Решение

Вычтем из первого второе: $(x-y)^2 = 1$. Тогда

$ \left[\begin{array}{l} x-y = 1, \\ x-y = -1 \end{array}\right. \quad \Leftrightarrow \quad \left[\begin{array}{l} x = y+1, \\ x = y-1. \end{array}\right. $

Подставляя полученные выражения во второе уравнение системы, получаем два квадратных уравнения: $2y^2 + 2y - 2a + 1 = 0$ и $2y^2 - 2y - 2a + 1 =0$. Дискриминант каждого из них равен $D = 16a-4$.

Заметим, что не может получиться так, что пара корней первого из квадратных уравнений совпадает с парой корней второго квадратного уравнения, так как сумма корней первого равна $-1$, а второго 1.

Значит, нужно, чтобы у каждого из этих уравнений было по одному корню, тогда у исходной системы их будет два решения. То есть $D = 16a - 4 = 0$.

Ответ. $a=\dfrac{1}{4}$

Найдите все значения параметра $a$, при каждом из которых уравнение $4x-|3x-|x+a||=9|x-3|$ имеет два корня.

Решение

Перепишем уравнение в виде:

$ 9|x-3|-4x+|3x-|x+a|| = 0. $

Рассмотрим функцию $f(x) = 9|x-3|-4x+|3x-|x+a||$.

При $x\geqslant 3$ первый модуль раскрывается со знаком плюс, и функция принимает вид: $f(x) = 5x-27+|3x-|x+a||$. Очевидно, что при любом раскрытии модулей в итоге будет получаться линейная функция с коэффициентом $k\geqslant 5-3-1=1>0$, то есть эта функция на данном промежутке неограниченно возрастает.

Рассмотрим теперь промежуток $x<3$. В этом случае первый модуль раскрывается с минусом, и функция принимает следующий вид: $f(x) = - 13x+27+|3x-|x+a||$. При любом раскрытии модулей в итоге будет получаться линейная функция с коэффициентом $k\leqslant - 13+3+1 = - 9<0$, то есть на этом промежутке функция убывает.

Итак, мы получили, что $x=3$ - точка минимума данной функции. А это означает, что для того чтобы у исходного уравнения было два решения, значение функции в точке минимума должно быть меньше нуля. То есть имеет место неравенство: $f(3)<0$.

$ 12-|9-|3+a||>0 \quad \Leftrightarrow \quad |9-|3+a|| < 12 \quad \Leftrightarrow \quad -12 < 9-|3+a| < 12 \quad \Leftrightarrow \quad$

$\Leftrightarrow\quad |3+a| < 21 \quad \Leftrightarrow \quad - 21 < 3+a < 21 \quad \Leftrightarrow \quad -24

Ответ. $a \in (-24; 18)$

При каких значениях параметра $a$ уравнение $5^{2x}-3\cdot 5^x+a-1=0$ имеет единственный корень?

Решение

Сделаем замену: $t = 5^x > 0$. Тогда первоначальное уравнение принимает вид квадратного уравнения: $t^2-3t+a-1 =0$. Исходное уравнение будет иметь единственный корень в том случае, если у данного уравнения будет один положительный корень либо два корня, один из которых положительный, другой - отрицательный.

Дискриминант уравнения равен: $D = 13-4a$. Один корень это уравнение будет иметь в том случае, если полученный дискриминант окажется равным нулю, то есть при $a = \dfrac{13}{4}$. При этом корень $t=\dfrac{3}{2} > 0$, поэтому данное значение $a$ подходит.

Если есть два корня, один из которых положителен, другой - неположителен, то $D = 13-4a > 0$, $x_1+x_2 = 3 > 0$ и $x_1x_2 = a - 1 \leqslant 0$.

То есть $a\in(-\infty;1]$

Ответ. $a\in(-\infty;1]\cup\left\{\dfrac{13}{4}\right\}$

Найдите все значения параметра $a$, при которых система

$ \begin{cases}\log_a y = (x^2-2x)^2, \\ x^2+y=2x\end{cases} $

имеет ровно два решения.

Решение

Преобразуем систему к следующему виду:

$ \begin{cases} \log_a y = (2x-x^2)^2, \\ y = 2x-x^2. \end{cases} $

Поскольку параметр $a$ находится в основании логарифма, на него накладываются следующие ограничения: $a>0$, $a \ne 1$. Поскольку переменная $y$ является аргументом логарифма, то $y > 0$.

Скомбинировав оба уравнения системы, переходим к уравнению: $\log_a y = y^2$. В зависимости от того, какие значения принимает параметр $a$, возможны два случая:

  1. Пусть $0 < a < 1$. В этом случае функция $f(y) = \log_a y$ убывает на области определения, а функция $g(y)=y^2$ возрастает в той же области $y > 0$. Из поведения графиков очевидно, что корень уравнения один, при этом он меньше 1. Второе уравнение системы и вся система в целом имеют, следовательно, два решения, в силу того что дискриминант уравнения $ x^2-2x+y = 0$ при $0
  2. Пусть теперь $a > 1$. В этом случае функция $f(y)=\log_a y \leqslant 0$ при $y < 1$, а функция $g(y) = y^2 > 0$ при тех же $y$. Значит, если решения и есть, то только при $y > 1$, но второе уравнение системы решений иметь не будет, так как дискриминант уравнения $x^2 - 2x + y = 0$ при $y > 1$ отрицателен.

Ответ. $a\in(0;1)$

Рассмотрим случай, когда $a > 1$. Так как при больших по модулю значениях $t$ график функции $f(t) = a^t$ лежит выше прямой $g(t) = t$, то единственная общая точка может быть только точкой касания.

Пусть $t_0$ - точка касания. В этой точке производная к $f(t) = a^t$ равняется единице (тангенс угла наклона касательной), кроме того, значения обоих функций совпадают, то есть имеет место система:

$ \begin{cases} a^{t_0}\ln a = 1, \\ a^{t_0} = t_0 \end{cases} \quad \Leftrightarrow \quad \begin{cases} a^{t_0} = \dfrac{1}{\ln a}, \\ a^{\tau} = \tau \end{cases} $

Откуда $t_0 = \dfrac{1}{\ln a}$.

$ a^{\frac{1}{\ln a}}\ln a = 1 \quad \Leftrightarrow \quad a^{\log_a e} =\frac{1}{\ln a} \quad \Leftrightarrow \quad a = e^{\frac{1}{e}}. $

При этом других общих точек у прямой и показательной функции очевидно нет.

Ответ. $a \in (0;1] \cup \left\{e^{e^{-1}}\right\}$

Применение уравнений широко распространено в нашей жизни. Они используются во многих расчетах, строительстве сооружений и даже спорте. Уравнения человек использовал еще в древности и с тех пор их применение только возрастает. В математике существуют задачи, в которых необходимо произвести поиск решений линейных и квадратных уравнений в общем виде или произвести поиск количества корней, которое имеет уравнение в зависимости от значения параметра. Все эти задачи с параметрами.

Рассмотрим следующие уравнения в качестве наглядного примера:

\[у = kx,\] где \ - переменные, \- параметр;

\[у = kx + b,\] где \ - переменные, \ - параметр;

\[аx^2 + bх + с = 0,\] где \ - переменная, \[а, b, с\] - параметр.

Решить уравнение с параметром значит, как правило, решить бесконечное множество уравнений.

Однако, придерживаясь определенного алгоритма, можно легко решить такие уравнения:

1. Определить "контрольные" значения параметра.

2. Решить исходное уравнение относительно [\x\] при значениях параметра, определенных в первом пункте.

3. Решить исходное уравнение относительно [\x\] при значениях параметра, отличающихся от выбранных в первом пункте.

Допустим, дано такое уравнение:

\[\mid 6 - x \mid = a.\]

Проанализировав исходные данные, видно, что a \[\ge 0.\]

По правилу модуля \ выразим \

Ответ: \ где \

Где можно решить уравнение с параметром онлайн?

Решить уравнение вы можете на нашем сайте https://сайт. Бесплатный онлайн решатель позволит решить уравнение онлайн любой сложности за считанные секунды. Все, что вам необходимо сделать - это просто ввести свои данные в решателе. Так же вы можете посмотреть видео инструкцию и узнать, как решить уравнение на нашем сайте. А если у вас остались вопросы, то вы можете задать их в нашей групе Вконтакте http://vk.com/pocketteacher. Вступайте в нашу группу, мы всегда рады помочь вам.

Уравнение вида f (x ; a ) = 0 называется уравнением с переменной х и параметром а .

Решить уравнение с параметром а – это значит, для каждого значения а найти значения х , удовлетворяющие этому уравнению.

Пример 1. ах = 0

Пример 2. ах = а

Пример 3.

х + 2 = ах
х – ах = -2
х(1 – а) = -2

Если 1 – а = 0, т.е. а = 1, то х 0 = -2 корней нет

Если 1 – а 0, т.е. а 1, то х =

Пример 4.

(а 2 – 1) х = 2а 2 + а – 3
(а – 1)(а + 1)х = 2(а – 1)(а – 1,5)
(а – 1)(а + 1)х = (1а – 3)(а – 1)

Если а = 1, то 0х = 0
х – любое действительное число

Если а = -1, то 0х = -2
Корней нет

Если а 1, а -1, то х = (единственное решение).

Это значит, что каждому допустимому значению а соответствует единственное значение х .

Например:

если а = 5, то х = = ;

если а = 0, то х = 3 и т. д.

Дидактический материал

1. ах = х + 3

2. 4 + ах = 3х – 1

3. а = +

при а = 1 корней нет.

при а = 3 корней нет.

при а = 1 х – любое действительное число, кроме х = 1

при а = -1, а = 0 решений нет.

при а = 0, а = 2 решений нет.

при а = -3, а = 0, 5, а = -2 решений нет

при а = -с , с = 0 решений нет.

Квадратные уравнения с параметром

Пример 1. Решить уравнение

(а – 1)х 2 = 2(2а + 1)х + 4а + 3 = 0

При а = 1 6х + 7 = 0

В случае а 1 выделим те значения параметра, при которых Д обращается в нуль.

Д = (2(2а + 1)) 2 – 4(а – 1)(4а + 30 = 16а 2 + 16а + 4 – 4(4а 2 + 3а – 4а – 3) = 16а 2 + 16а + 4 – 16а 2 + 4а + 12 = 20а + 16

20а + 16 = 0

20а = -16

Если а < -4/5, то Д < 0, уравнение имеет действительный корень.

Если а > -4/5 и а 1, то Д > 0,

х =

Если а = 4/5, то Д = 0,

Пример 2. При каких значениях параметра а уравнение

х 2 + 2(а + 1)х + 9а – 5 = 0 имеет 2 различных отрицательных корня?

Д = 4(а + 1) 2 – 4(9а – 5) = 4а 2 – 28а + 24 = 4(а – 1)(а – 6)

4(а – 1)(а – 6) > 0

по т. Виета: х 1 + х 2 = -2(а + 1)
х 1 х 2 = 9а – 5

По условию х 1 < 0, х 2 < 0 то –2(а + 1) < 0 и 9а – 5 > 0

В итоге 4(а – 1)(а – 6) > 0
- 2(а + 1) < 0
9а – 5 > 0
а < 1: а > 6
а > - 1
а > 5/9

(Рис. 1 )

< a < 1, либо a > 6

Пример 3. Найдите значения а , при которых данное уравнение имеет решение.

х 2 – 2(а – 1)х + 2а + 1 = 0

Д = 4(а – 1) 2 – 4(2а + 10 = 4а 2 – 8а + 4 – 8а – 4 = 4а 2 – 16а

4а 2 – 16 0

4а (а – 4) 0

а(а – 4)) 0

а(а – 4) = 0

а = 0 или а – 4 = 0
а = 4

(Рис. 2 )

Ответ: а 0 и а 4

Дидактический материал

1. При каком значении а уравнение ах 2 – (а + 1) х + 2а – 1 = 0 имеет один корень?

2. При каком значении а уравнение (а + 2) х 2 + 2(а + 2)х + 2 = 0 имеет один корень?

3. При каких значениях а уравнение (а 2 – 6а + 8) х 2 + (а 2 – 4) х + (10 – 3а а 2) = 0 имеет более двух корней?

4. При каких значениях а уравнение 2х 2 + х а = 0 имеет хотя бы один общий корень с уравнением 2х 2 – 7х + 6 = 0?

5. При каких значениях а уравнения х 2 +ах + 1 = 0 и х 2 + х + а = 0 имеют хотя бы один общий корень?

1. При а = - 1/7, а = 0, а = 1

2. При а = 0

3. При а = 2

4. При а = 10

5. При а = - 2

Показательные уравнения с параметром

Пример 1 .Найти все значения а , при которых уравнение

9 х – (а + 2)*3 х-1/х +2а *3 -2/х = 0 (1) имеет ровно два корня.

Решение. Умножив обе части уравнения (1) на 3 2/х, получим равносильное уравнение

3 2(х+1/х) – (а + 2)*3 х+1/х + 2а = 0 (2)

Пусть 3 х+1/х = у , тогда уравнение (2) примет вид у 2 – (а + 2)у + 2а = 0, или

(у – 2)(у а ) = 0, откуда у 1 =2, у 2 = а .

Если у = 2, т.е. 3 х+1/х = 2 то х + 1/х = log 3 2 , или х 2 – х log 3 2 + 1 = 0.

Это уравнение не имеет действительных корней, так как его Д = log 2 3 2 – 4 < 0.

Если у = а , т.е. 3 х+1/х = а то х + 1/х = log 3 а , или х 2 – х log 3 а + 1 = 0. (3)

Уравнение (3) имеет ровно два корня тогда и только тогда, когда

Д = log 2 3 2 – 4 > 0, или |log 3 а| > 2.

Если log 3 а > 2, то а > 9, а если log 3 а < -2, то 0 < а < 1/9.

Ответ: 0 < а < 1/9, а > 9.

Пример 2 . При каких значениях а уравнение 2 2х – (а – 3) 2 х – 3а = 0 имеет решения?

Для того чтобы заданное уравнение имело решения, необходимо и достаточно, чтобы уравнение t 2 – (a – 3) t – 3a = 0 имело хотя бы один положительный корень. Найдем корни по теореме Виета: х 1 = -3, х 2 = а = >

а – положительное число.

Ответ: при а > 0

Дидактический материал

1. Найти все значения а, при которых уравнение

25 х – (2а + 5)*5 х-1/х + 10а * 5 -2/х = 0 имеет ровно 2 решения.

2. При каких значениях а уравнение

2 (а-1)х?+2(а+3)х+а = 1/4 имеет единственный корень?

3. При каких значениях параметра а уравнение

4 х - (5а -3)2 х +4а 2 – 3а = 0 имеет единственное решение?

Логарифмические уравнения с параметром

Пример 1. Найти все значения а , при которых уравнение

log 4x (1 + ах ) = 1/2 (1)

имеет единственное решение.

Решение. Уравнение (1) равносильно уравнению

1 + ах = 2х при х > 0, х 1/4 (3)

х = у

ау 2 –у + 1 = 0 (4)

Не выполняется (2) условие из (3).

Пусть а 0, то ау 2 – 2у + 1 = 0 имеет действительные корни тогда и только тогда, когда Д = 4 – 4а 0, т.е. при а 1.Чтобы решить неравенство (3), построим графики функций Галицкий М.Л., Мошкович М.М., Шварцбурд С.И. Углубленное изучение курса алгебры и математического анализа. – М.: Просвещение, 1990

  • Крамор В.С . Повторяем и систематизируем школьный курс алгебры и начал анализа. – М.: Просвещение, 1990.
  • Галицкий М.Л., Гольдман А.М., Звавич Л.И . Сборник задач по алгебре. – М.: Просвещение, 1994.
  • Звавич Л.И., Шляпочник Л.Я. Алгебра и начала анализа. Решение экзаменационных задач. – М.: Дрофа, 1998.
  • Макарычев Ю.Н. и др. Дидактические материалы по алгебре 7, 8, 9 кл. – М.: Просвещение, 2001.
  • Саакян С.И., Гольдман А.М., Денисов Д.В. Задачи по алгебре и началам анализа для 10–11-х классов. – М.: Просвещение, 1990.
  • Журналы “Математика в школе”.
  • Л.С. Лаппо и др. ЕГЭ. Учебное пособие. – М.: Экзамен, 2001–2008.
  • 1. Задача.
    При каких значениях параметра a уравнение (a - 1)x 2 + 2x + a - 1 = 0 имеет ровно один корень?

    1. Решение.
    При a = 1 уравнение имеет вид 2x = 0 и, очевидно, имеет единственный корень x = 0. Если a № 1, то данное уравнение является квадратным и имеет единственный корень при тех значениях параметра, при которых дискриминант квадратного трехчлена равен нулю. Приравнивая дискриминант к нулю, получаем уравнение относительно параметра a 4a 2 - 8a = 0, откуда a = 0 или a = 2.

    1. Ответ: уравнение имеет единственный корень при a О {0; 1; 2}.

    2. Задача.
    Найти все значения параметра a , при которых имеет два различных корня уравнение x 2 +4ax +8a +3 = 0.
    2. Решение.
    Уравнение x 2 +4ax +8a +3 = 0 имеет два различных корня тогда и только тогда, когда D = 16a 2 -4(8a +3) > 0. Получаем (после сокращения на общий множитель 4) 4a 2 -8a -3 > 0, откуда

    2. Ответ:

    a О (-Ґ ; 1 – Ц 7 2
    ) И (1 + Ц 7 2
    ; Ґ ).

    3. Задача.
    Известно, что
    f 2 (x ) = 6x -x 2 -6.
    а) Постройте график функции f 1 (x ) при a = 1.
    б) При каком значении a графики функций f 1 (x ) и f 2 (x ) имеют единственную общую точку?

    3. Решение.
    3.а. Преобразуем f 1 (x ) следующим образом
    График этой функции при a = 1 изображен на рисунке справа.
    3.б. Сразу отметим, что графики функций y = kx +b и y = ax 2 +bx +c (a № 0) пересекаются в единственной точке тогда и только тогда, когда квадратное уравнение kx +b = ax 2 +bx +c имеет единственный корень. Используя представление f 1 из 3.а , приравняем дискриминант уравнения a = 6x -x 2 -6 к нулю. Из уравнения 36-24-4a = 0 получаем a = 3. Проделав то же самое с уравнением 2x -a = 6x -x 2 -6 найдем a = 2. Нетрудно убедиться, что эти значения параметра удовлетворяют условиям задачи. Ответ: a = 2 или a = 3.

    4. Задача.
    Найти все значения a , при которых множество решений неравенства x 2 -2ax -3a і 0 содержит отрезок .

    4. Решение.
    Первая координата вершины параболы f (x ) = x 2 -2ax -3a равна x 0 = a . Из свойств квадратичной функции условие f (x ) і 0 на отрезке равносильно совокупности трех систем
    имеет ровно два решения?

    5. Решение.
    Перепишем это уравнение в виде x 2 + (2a -2)x - 3a +7 = 0. Это квадратное уравнение, оно имеет ровно два решения, если его дискриминант строго больше нуля. Вычисляя дискриминант, получаем, что условием наличия ровно двух корней является выполнение неравенства a 2 +a -6 > 0. Решая неравенство, находим a < -3 или a > 2. Первое из неравенств, очевидно, решений в натуральных числах не имеет, а наименьшим натуральным решением второго является число 3.

    5. Ответ: 3.

    6. Задача (10 кл.)
    Найти все значения a , при которых график функции или, после очевидных преобразований, a -2 = | 2-a | . Последнее уравнение равносильно неравенству a і 2.

    6. Ответ: a О }