Датчики влажности - как устроены и работают. Самодельный, стабильный датчик влажности почвы для автоматической поливальной установки Самодельный датчик влажности почвы из нержавейки

Поэт Андрей Вознесенский однажды сказал так: «лень - двигатель прогресса». Пожалуй, трудно не согласиться с этой фразой, ведь большинство электронных устройств создаются именно с той целью, чтобы облегчить нашу с вами повседневную жизнь, полную забот и всяких разных суетных дел.

Если вы сейчас читаете эту статью, то вас, наверное, очень утомляет процесс полива цветов. Ведь цветы - существа нежные, чуть их перельёшь, недовольны, забудешь полить на денёк, так всё, они вот-вот увянут. А сколько цветов в мире погибло лишь от того, что их хозяева уехали в отпуск на недельку, оставив зелёных бедолаг чахнуть в сухом горшке! Страшно представить.

Именно для предотвращения таких ужасных ситуаций придуманы системы автоматического полива. На горшок устанавливается датчик, замеряющий влажность почвы - он представляет собой для металлических прутка из нержавеющей стали, воткнутые в землю на расстоянии сантиметра друг от друга.

По проводам они подключаются к схеме, задача которой открывать реле только тогда, когда влажность упадёт ниже заданной и закрывать реле в тот момент, когда почва вновь насытится влагой. Реле, в своё очередь, управляет насосом, который качает воду из резервуара прямо под корень растению.

Схема датчика

Как известно, электропроводимость сухой и влажной почвы отличается довольно значительно, именно этот факт лежит в основе работы датчика. Резистор номиналом 10 кОм и участок почвы между прутками образуют делитель напряжения, их средняя точка подключается напрямую на вход ОУ. На другой вход ОУ напряжение подаётся со средней точки переменного резистора, т.е. его можно настраивать от нуля до напряжения питания. С его помощью выставляется порог переключения компаратора, в роли которого и работает ОУ. Как только напряжение на одном его входе превысит напряжение на другом - на выходе окажется логическая «1», загорится светодиод, транзистор откроется и включит реле. Транзистор можно применить любой, структуры PNP, подходящий по току и напряжению, например, КТ3107 или КТ814. Операционный усилитель TL072 или любой аналогичный, например, RC4558. Параллельно обмотке реле следует поставить маломощный диод, например, 1n4148. Напряжение питания схемы - 12 вольт.

Из-за длинных проводов от горшка до самой платы может возникнуть такая ситуация, что реле переключается не чётко, а начинает щёлкать с частотой переменного тока в сети, и только спустя какое-то время устанавливается в открытом положении. Для устранения этого нехорошего явления следует поставить электролитический конденсатор ёмкостью 10-100 мкФ параллельно датчику. Архив с платой . Удачной сборки! Автор - Дмитрий С.

Обсудить статью СХЕМА ДАТЧИКА ВЛАЖНОСТИ ПОЧВЫ

Прибор, которым измеряют уровень влажности, называется гигрометром или просто датчиком влажности. В повседневной жизни влажность выступает немаловажным параметром, и часто не только для самой обычной жизни, но и для различной техники, и для сельского хозяйства (влажность почвы) и много для чего еще.

В частности, от степени влажности воздуха немало зависит наше самочувствие. Особенно чувствительными к влажности являются метеозависимые люди, а также люди, страдающие гипертонической болезнью, бронхиальной астмой, заболеваниями сердечно-сосудистой системы.

При высокой сухости воздуха даже здоровые люди ощущают дискомфорт, сонливость, зуд и раздражение кожных покровов. Часто сухой воздух может спровоцировать заболевания дыхательной системы, начиная с ОРЗ и ОРВИ, и заканчивая даже пневмонией.

На предприятиях влажность воздуха способна влиять на сохранность продукции и оборудования, а в сельском хозяйстве однозначно влияние влажности почвы на плодородие и т. д. Здесь и спасает применение датчиков влажности — гигрометров .

Какие-то технические приборы изначально калибруются под строго требуемую важность, и иногда чтобы провести точную настройку прибора, важно располагать точным значением влажности в окружающей среде.

Влажность может измеряться несколькими из возможных величин:

    Для определения влажности как воздуха, так и других газов, измерения проводятся в граммах на кубометр, когда речь об абсолютном значении влажности, либо в единицах RH, когда речь о влажности относительной.

    Для измеряется влажности твердых тел или в жидкостях подходят измерения в процентах от массы исследуемых образцов.

    Для определения влажности плохо смешиваемых жидкостей, единицами измерения будут служить ppm (сколько частей воды приходится на 1000000 частей веса образца).

По принципу действия, гигрометры делятся на:

    емкостные;

    резистивные;

    термисторные;

    оптические;

    электронные.

Емкостные гигрометры, в самом простом случае, представляют собой конденсаторы с воздухом в качестве диэлектрика в зазоре. Известно, что у воздуха диэлектрическая проницаемость непосредственно связана с влажностью, а изменения влажности диэлектрика приводят и к изменениям в емкости воздушного конденсатора.

Более сложный вариант емкостного датчика влажности в воздушном зазоре содержит диэлектрик, с диэлектрической проницаемостью, могущей сильно меняться под влиянием на него влажности. Данный подход делает качество датчика лучше, чем просто с воздухом между обкладками конденсатора.

Второй вариант хорошо подходит для проведения измерений относительно содержания воды в твердых веществах. Исследуемый объект размещается между обкладками такого конденсатора, к примеру объектом может быть таблетка, а сам конденсатор присоединяется к колебательному контуру и к электронному генератору, при этом измеряется собственная частота полученного контура, и по измеренной частоте «вычисляется» емкость, полученная при внесении исследуемого образца.

Безусловно, данный метод обладает и некоторыми недостатками, например при влажности образца ниже 0.5% он будет неточным, кроме того, измеряемый образец должен быть очищен от частиц, имеющих высокую диэлектрическую проницаемость, к тому же важна и форма образца в процессе измерений, она не должна изменяться в ходе исследования.

Третий тип емкостного датчика влажности - это емкостный тонкопленочный гигрометр. Он включает в себя подложку, на которую нанесены два гребенчатых электрода. Гребенчатые электроды играют в данном случае роль обкладок. С целью термокомпенсации в датчик дополнительно вводят еще и два термодатчика.

Такой датчик включает в себя два электрода, которые нанесены на подложку, а поверх на сами электроды нанесен слой материала, который отличается достаточно малым сопротивлением, сильно, однако, меняющимся в зависимости от влажности.

Подходящим материалом в устройстве может выступать оксид алюминия. Данный оксид хорошо поглощает из внешней среды воду, при этом удельное сопротивление его заметно изменяется. В результате общее сопротивление цепи измерения такого датчика будет значительно зависеть от влажности. Так, об уровне влажности станет свидетельствовать величина протекающего тока. Достоинство датчиков такого типа - малая их цена.

Термисторный гигрометр состоит из пары одинаковых термисторов. К слову напомним, что — это нелинейный электронный компонент, сопротивление которого сильно зависит от его температуры.

Один из включенных в схему термисторов размещают в герметичной камере с сухим воздухом. А другой - в камере с отверстиями, через которые в нее поступает воздух с характерной влажностью, значение которой требуется измерить. Термисторы соединяют по мостовой схеме, на одну из диагоналей моста подается напряжение, а с другой диагонали считывают показания.

В случае, когда напряжение на выходных клеммах равно нулю, температуры обоих компонентов равны, следовательно одинакова и влажность. В случае, когда на выходе будет получено не нулевое напряжение, то это свидетельствует о наличии разности влажностей в камерах. Так, по значению полученного при измерениях напряжения определяют влажность.

У неискушенного исследователя может возникнуть справедливый вопрос, почему же температура термистора меняется при его взаимодействии с влажным воздухом? А дело все в том, что при увеличении влажности, с корпуса термистора начинает испаряться вода, при этом температура корпуса уменьшается, и чем выше влажность, тем более интенсивно происходит испарение, и тем стремительнее остывает термистор.

4) Оптический (конденсационный) датчик влажности

Этот вид датчиков наиболее точен. В основе работы оптического датчика влажности — явление связанной с понятием «точка росы». В момент достижения температурой точки росы, газообразная и жидкая фазы - в условии термодинамического равновесия.

Так, если взять стекло, и установит в газообразной среде, где температура в момент исследования выше точки росы, а затем начать процесс охлаждения данного стекла, то при конкретном значении температуры на поверхности стекла начнет образовываться водяной конденсат, это водяной пар станет переходить в жидкую фазу. Данная температура и будет как раз точкой росы.

Так вот, температура точки росы неразрывно связана и зависит от таких параметров как влажность и давление в окружающей среде. В результате, имея возможность измерения давления и температуры точки росы, получится легко определить и влажность. Этот принцип служит основой для функционирования оптических датчиков влажности.

Простейшая схема такого датчика состоит из светодиода, светящего на зеркальную поверхность. Зеркало же отражает свет, меняя его направление, и направляя на фотодетектор. В данном случае зеркало можно подогревать или охлаждать посредством специального устройства регулирования температуры высокой точности. Часто таким устройством выступает термоэлектрический насос. Конечно же, на зеркало устанавливают датчик для измерения температуры.

Прежде чем начать измерения, температуру зеркала выставляют на значение, которое заведомо выше температуры точки росы. Дальше осуществляют постепенное охлаждение зеркала. В момент, когда температура начнет пересекать точку росы, на поверхности зеркала тут же начнут конденсироваться капли воды, и световой луч от диода приломится из-за них, рассеется, а это приведет к уменьшению тока в цепи фотодетектора. Через обратную связь фотодетектор взаимодействует с регулятором температуры зеркала.

Так, опираясь на информацию, полученную в форме сигналов от фотодетектора, регулятор температуры станет удерживать температуру на поверхности зеркала точно равной точке росы, а термодатчик соответственно покажет температуру. Так, при известных давлении и температуре можно точно определить основные показатели влажности.

Оптический датчик влажности обладает самой высокой точностью, недостижимой другими типами датчиков, плюс отсутствие гистерезиса. Недостаток — самая высокая цена из всех, плюс большое потребление электроэнергии. К тому же необходимо следить за тем, чтобы зеркало было чистым.

Принцип работы электронного датчика влажности воздуха основан на изменении концентрации электролита, покрывающего собой любой электроизоляционный материал. Существуют такие приборы с автоматическим подогревом с привязкой к точке росы.

Часто точка росы измеряется над концентрированным раствором хлорида лития, который является очень чувствительным к минимальным изменениям влажности. Для максимального удобства такой гигрометр зачастую дополнительно оборудуют термометром. Этот прибор обладает высокой точностью и малой погрешностью. Он способен измерять влажность независимо от температуры окружающей среды.

Популярны и простые электронные гигрометры в форме двух электродов, которые просто втыкаются в почву, контролируя ее влажность по степени проводимости в зависимости от этой самой влажности. Такие сенсоры популярны у поклонников , поскольку можно легко настроить автоматический полив грядки или цветка в горшке, на случай если поливать в ручную некогда или не удобно.

Прежде чем купить датчик, подумайте, что вам нужно будет измерять, относительную или абсолютную влажность, воздуха или почвы, каков предвидится диапазон измерений, важен ли гистерезис, и какая нужна точность. Самый точный датчик — оптический. Обратите внимание на класс защиты IP, на диапазон рабочих температур, в зависимости от конкретных условий, где будет использоваться датчик, подойдут ли вам параметры.

Соединяем Arduino с датчиком влажности почвы FC-28, чтобы определить, когда ваша почва под растениями нуждается в воде.

В этой статье мы собираемся использовать датчик влажности почвы FC-28 с Ардуино. Этот датчик измеряет объемное содержание воды в почве и дает нам уровень влаги. Датчик дает нам на выходе аналоговые и цифровые данное. Мы собираемся подключить его в обоих режимах.

Датчик влажности почвы состоит из двух датчиков, которые используются для измерения объемного содержания воды. Два зонда позволяют току пройти через почву, которая дает значение сопротивления, что позволяет в итоге измерить значение влаги.

Когда есть вода, почва будет проводить больше электричества, а это значит, что будет меньше сопротивление. Сухая почва плохо проводит электричество, поэтому когда воды меньше, почва проводит меньше электричества, а это значит, что сопротивление будет больше.

Датчик FC-28 можно соединить в аналоговом и цифровом режимах. Сначала мы подключим его в аналоговом режиме, а затем в цифровом.

Спецификация

Спецификации датчика влажности почвы FC-28:

  • входное напряжение: 3.3–5V
  • выходное напряжение: 0–4.2V
  • входной ток: 35mA
  • выходной сигнал: аналоговый и цифровой

Распиновка

Датчик влажности почвы FC-28 имеет четыре контакта:

  • VCC: питание
  • A0: аналоговый выход
  • D0: цифровой выход
  • GND: земля

Модуль также содержит потенциометр, который установит пороговое значение. Это пороговое значение будет сравниваться на компараторе LM393. Светодиод будет нам сигнализировать значение выше или ниже порогового.

Аналоговый режим

Для подключения датчика в аналоговом режиме нам потребуется использовать аналоговый выход датчика. Датчик влажности почвы FC-28 принимает аналоговые выходные значения от 0 до 1023.

Влажность измеряется в процентах, поэтому мы сопоставим эти значения от 0 до 100, а затем покажем их на последовательном мониторе (serial monitor). Вы можете установить различные значения влаги и повернуть водяную помпу "включено-выключено" согласно этим значениям.

Электрическая схема

Подключите датчик влажности почвы FC-28 к Ардуино следующим образом:

  • VCC FC-28 → 5V Arduino
  • GND FC-28 → GND Arduino
  • A0 FC-28 → A0 Arduino

Код для аналогового выхода

Для аналогового выхода мы пишем такой код:

Int sensor_pin = A0; int output_value ; void setup() { Serial.begin(9600); Serial.println("Reading From the Sensor ..."); delay(2000); } void loop() { output_value= analogRead(sensor_pin); output_value = map(output_value,550,0,0,100); Serial.print("Mositure: "); Serial.print(output_value); Serial.println("%"); delay(1000); }

Объяснение кода

Прежде всего, мы определили две переменные: одну для контакта датчика влажности почвы, а другую для хранения выхода датчика.

Int sensor_pin = A0; int output_value ;

В функции setup, команда Serial.begin(9600) поможет в общении между Arduino и серийным монитором. После этого, мы напечатаем "Reading From the Sensor ...” (англ. - считываем с датчика) на обычном дисплее.

Void setup() { Serial.begin(9600); Serial.println("Reading From the Sensor ..."); delay(2000); }

В функции цикла, мы прочитаем значение от аналогового выхода датчика и сохраним значение в переменной output_value . Затем мы сопоставим выходные значения с 0-100, потому что влажность измеряется в процентах. Когда мы брали показания с сухого грунта, значение датчика было 550, а во влажном грунте значение датчика было 10. Мы сопоставили эти значения, чтобы получить значение влаги. После этого мы напечатали эти значения на последовательном мониторе.

void loop() { output_value= analogRead(sensor_pin); output_value = map(output_value,550,10,0,100); Serial.print("Mositure: "); Serial.print(output_value); Serial.println("%"); delay(1000); }

Цифровой режим

Для подключения датчика влажности почвы FC-28 в цифровом режиме мы подключим цифровой выход датчика к цифровому контакту Arduino.

Модуль датчика содержит потенциометр, который использован для того чтобы установить пороговое значение. Пороговое значение после этого сравнивается со значением выхода датчика используя компаратор LM393, который помещен на модуле датчика FC-28. Компаратор LM393 сравнивает значение выхода датчика и пороговое значение, и после этого дает нам выходное значение через цифровой вывод.

Когда значение датчика больше чем пороговое значение, цифровой выход передаст нам 5В, и загорится светодиод датчика. В противном случае, когда значение датчика будет меньше чем это пороговое значение на цифровой вывод передастся 0В и светодиод не загорится.

Электрическая схема

Соединения для датчика влажности почвы FC-28 и Ардуино в цифровом режиме следующие:

  • VCC FC-28 → 5V Arduino
  • GND FC-28 → GND Arduino
  • D0 FC-28 → Пин 12 Arduino
  • Светодиод положительный → Вывод 13 Ардуино
  • Светодиод минус → GND Ардуино

Код для цифрового режима

Код для цифрового режима ниже:

Int led_pin =13; int sensor_pin =8; void setup() { pinMode(led_pin, OUTPUT); pinMode(sensor_pin, INPUT); } void loop() { if(digitalRead(sensor_pin) == HIGH){ digitalWrite(led_pin, HIGH); } else { digitalWrite(led_pin, LOW); delay(1000); } }

Объяснение кода

Прежде всего, мы инициализировали 2 переменные для соединения вывода светодиода и цифрового вывода датчика.

Int led_pin = 13; int sensor_pin = 8;

В функции setup мы объявляем пин светодиода как пин выхода, потому что мы включим светодиод через него. Мы объявили пин датчика как входной пин, потому как Ардуино будет принимать значения от датчика через этот вывод.

Void setup() { pinMode(led_pin, OUTPUT); pinMode(sensor_pin, INPUT); }

В функции цикла, мы считываем с вывода датчика. Если значение более высокое чем пороговое значение, то включится светодиод. Если значение датчика будет ниже порогового значения, то индикатор погаснет.

Void loop() { if(digitalRead(sensor_pin) == HIGH){ digitalWrite(led_pin, HIGH); } else { digitalWrite(led_pin, LOW); delay(1000); } }

На этом вводный урок по работе с датчиком FC-28 для Ардуино мы завершаем. Успешных вам проектов.

Не все владельцы садов и огородов имеют возможность каждый день ухаживать за своими посадками. Тем не менее без своевременного полива нельзя рассчитывать на хороший урожай.

Решением проблемы станет автоматическая система, позволяющая добиться того, чтобы грунт на вашем участке сохранял требуемую степень влажности на протяжении всего вашего отсутствия. Главной составляющей частью любого автополива является датчик влажности почвы.

Понятие датчика влажности

Датчик влажности ещё имеет другие названия. Его называют влагомером или сенсором влажности.


Как видно на фото датчиков влажности почвы, такое устройство представляет собой прибор, состоящий из двух проводов, подключённых к слабому источнику электроэнергии.

При росте влажности между электродами сила тока и сопротивление снижаются и наоборот, если воды в грунте становится недостаточно, данные показатели увеличиваются. Устройство включается простым нажатием кнопки.

Следует учитывать, что электроды будут находиться во влажной почве. Поэтому включение прибора рекомендуется осуществлять через ключ. Такой приём уменьшит отрицательное воздействие коррозии.

Зачем необходим данный прибор

Влагомеры устанавливают не только на открытом грунте, но и в теплицах. Контроль времени полива – вот для чего используют датчики влажности почвы. Вам не понадобиться ничего делать, лишь включить устройство. После оно будет работать без вашего участия.

Однако огородникам и садоводам следует отслеживать состояние электродов, поскольку они могут подвергнуться коррозионному разрушению и в результате выйти из строя.

Виды датчиков влажности почвы

Рассмотрим, какие бывают датчики влажности почвы. Их принято делить на:

Емкостные. Их конструкция схожа с воздушным конденсатором. В основе работы лежит изменение диэлектрических свойств воздуха в зависимости от его влажности, которое вызывает увеличение или снижение ёмкости.

Резистивные. Принцип их действия заключается в изменении сопротивления гигроскопического материала в зависимости от того, сколько влаги в нём содержится.

Психометрические. Принцип работы и схема устройства таких датчиков будут посложнее. В основе лежит физическое свойство потери тепла при испарении. Прибор состоит из сухого и влажного детектора. По разнице температур между ними и судят о количестве водяных паров в воздухе.

Аспирационные. Данный вид во многом схож с предыдущим, отличие составляет вентилятор, который служит для нагнетания воздушной смеси. Аспирационные приборы определения влажности используют в местах со слабым или прерывистым движением воздуха.

Какой датчик влажности выбрать зависит от каждого конкретного случая. На выбор прибора влияют и особенности установленной у вас системы автоматического полива и ваши финансовые возможности.


Материалы, необходимые для создания датчика своими руками

Если вы решили заняться изготовлением влагомера собственноручно, то вам нужно подготовить:

  • электроды диаметром 3-4 мм – 2 шт.;
  • текстолитовое основание;
  • гайки и шайбы.

Инструкция по изготовлению

Как же сделать датчик влажности почвы своими руками? Вот краткий инструктаж:

  • Шаг 1. Прикрепляем электроды к основанию.
  • Шаг 2. Нарезаем на концах электродов резьбу и заостряем с обратной стороны для более лёгкого погружения в почву.
  • Шаг.3. Делаем в основании отверстия и вкручиваем в них электроды. В качестве крепёжных элементов используем гайки и шайбы.
  • Шаг 4. Подбираем нужные провода, которые подойдут к шайбам.
  • Шаг 5. Изолируем электроды. Углубляем их в грунт на 5 – 10 см.

Обратите внимание!

Для работы датчика требуются: сила тока в 35 мА и напряжение в 5 В. В конце подключаем прибор, используя три провода, которые присоединяем к микропроцессору.

Контроллер позволяет скомбинировать датчик с зуммером. После этого подаётся сигнал, если количество влаги в почве резко уменьшается. Альтернативой звукового сигнала может служить загорание лампочки.

Датчик влажности почвы, без сомнения, вещь в хозяйстве нужная. Если у вас есть дача или огород, то непременно озаботьтесь его приобретением. Причём прибор вовсе не обязательно покупать, поскольку можно легко сделать самим.

Фото датчиков влажности почвы

Обратите внимание!

Обратите внимание!

Всем привет, сегодня в нашей статье мы рассмотрим как сделать датчик влажности почвы своими руками. Причиной самостоятельного изготовления может послужить износ датчика (коррозия, окисление), либо просто невозможность приобрести, долгое ожидание и желание смастерить что-либо своими руками. В моем случае желанием сделать датчик самому послужил износ, дело в том что щуп датчика при постоянной подаче напряжение взаимодействует с почвой и влагой в результате чего окисляется. Например датчики SparkFun покрывают его специальным составом (Electroless Nickel Immersion Gold) для увлечения ресурса работы. Так же что бы продлить жизнь датчику лучше подавать питание на датчик только в момент замеров.
В один "прекрасный" день я обратил внимание что моя система полива увлажняет почву без лишней надобности, при проверке датчика я извлек щуп из почвы и вот что я увидел:

Из-за коррозии между щупами появляется дополнительное сопротивление в результате которого сигнал становиться меньше и arduino считает что почва сухая. По скольку Я использую аналоговый сигнал то схему с цифровым выходом на компараторе я делать не буду для упрощения схемы.

На схеме изображен компаратор датчика влажности почвы, красным цветом отмечена часть которая преобразует аналоговый сигнал в цифровой. Не отмеченная часть это часть необходимая нам для преобразование влажности в аналоговый сигнал, мы ее и будем использовать. Чуть ниже я привел схему подключение щупов к arduino.

Левая часть схемы показывает как щупы подключаются к arduino, а правую часть (с резистором R2) я привел для того что бы показать за счет чего меняются показания АЦП. Когда щупы опущены в землю между ними образуется сопротивление (на схеме я отобразил его условно R2), если почва сухая то сопротивление бесконечно большое, а если влажное то оно стремиться к 0. Так как два сопротивления R1 и R2 образуют делитель напряжение, а средней точкой является выход (out a0) то от величины сопротивления R2 зависит напряжение на выходе. К примеру если сопротивление R2=10Kom то напряжение будет 2,5В. Можно сопротивление запаять на проводах что бы не делать дополнительных развязок, для стабильности показаний можно добавить конденсатор 0,01мкФ между - питания и out. схема подключение следующая:

Поскольку с электрической частью мы разобрались, можно перейти к механической части. Для изготовления щупов лучше использовать материал менее всего подверженного коррозии что бы продлить жизнь датчика. Можно использовать "нержавейку" или оцинкованный метал, форму можно выбрать любую, даже можно использовать два куска проволочки. Я для щупов выбрал "оцинковку", в качестве фиксирующего материал использовал небольшой кусок гетинакса. Так же стоит учесть что настояния между щупами должно быть 5мм-10мм, но не стоит делать больше. На концы оцинковки я напаял провода датчика. Вот что получилось в итоге:

Не стал делать подробный фото отчет, все и так просто. Ну и фото в работе:

Как я уже раньше указывал лучше использовать датчик только в момент измерений. Оптимальный вариант включение через транзисторный ключ, но так как потребление тока у меня составило 0,4мА можно включить на прямую. Для подачи напряжения во время замеров можно подключить контакт датчика VCC к пину ШИМ или использовать цифровой выход на момент измерений подавать высокий (HIGH) уровень, а потом устанавливать низкий. Так же стоит учесть что после подачи напряжения на датчик необходимо выждать некоторое время для стабилизации показаний. Пример через ШИМ:

Int sensor = A0; int power_sensor = 3;

void setup() {
// put your setup code here, to run once:
Serial.begin(9600);
analogWrite(power_sensor, 0);
}

void loop() {

delay(10000);
Serial.print("Suhost" : ");
Serial.println(analogRead(sensor));
analogWrite(power_sensor, 255);
delay(10000);
}

Спасибо всем за внимание!