Из чего состоят синтетические волокна. Искусственные регенерированные целлюлозные волокна: производство, сырье. Сырье для производства синтетических волокон

Волокна, из которых изготавливаются ткани, подразделяются на натуральные и искусственные. Существует три вида природных, натуральных волокон: 1) волокна растительного происхождения (хлопок и лен), 2)волокна животного происхождения (шерсть и шелк), 3)волокна, имеющие минеральное происхождение (асбест).

Достоинством материалов, полученных из натуральных, природных волокон является их высокая экологичность. Поскольку эти волокна имеют природное происхождение, то они, если можно так выразиться, прекрасно совместимы с человеческим телом, удобны в применении и гигиеничны.

Хлопок

Это волокно получают из хлопчатника.

Достоинством хлопчатобумажных тканей является их высокая гигиеничность. Они прекрасно пропускают воздух, позволяя коже дышать. Именно поэтому летняя одежда из хлопка очень практична. Хлопок чаще всего используется для изготовления детской одежды и белья, а также спортивной одежды.

Недостатком хлопка является то, что он мнется и довольно быстро изнашивается. Кроме того, он не слишком хорошо держит краску (линяет).

Льняное волокно получают из льна-долгунца.

Лен так же, как и хлопок, обладает высокими гигроскопическими свойствами. Льняное волокно обладает большей прочностью по сравнению с хлопковым, поэтому оно часто используется для изготовления постельного белья, полотенец и т. п. Кроме того, лен имеет способность охлаждать температуру тела, благодаря этому он незаменим для летней одежды.

Льняное волокно очень хорошо держит форму. В настоящее время его нередко смешивают с синтетическим, и из полученных тканей шьют элегантные женские и мужские летние костюмы, пиджаки, брюки и т. п.

Шелк

Шелковое волокно вырабатывают бабочки-шелкопряды, которые живут на шелковице (называемой также тутовым деревом), и питаются ее листьями. Эти бабочки, находясь на стадии гусениц, выделяют из своих желез волокно, необходимое им для окукливания. Это нежное, мягкое волокно и есть шелк.

Шелк-сырец получают при совместной размотке нескольких коконов. Затем из него вырабатывают крученый шелк, который используется в трикотажном производстве, а также для получения швейных ниток. Отходы шелка-сырца перерабатываются в пряжу. Впоследствии из этой пряжи изготавливается крепдешин, парашютный шелк и пр.

Натуральный шелк имеет прекрасные гигиенические свойства. Он пропускает воздух и великолепно впитывает влагу. Летом он приятно холодит кожу. Недостатками натурального шелка являются, во-первых, то, что он довольно сильно мнется, и, во-вторых, то, что от действия влаги (например, в результате потовых выделений или дождя) на нем появляются некрасивые пятна. Кроме того, натуральный шелк очень сильно садится после стирки. Поэтому его рекомендуется перед шитьем декатировать (намочить и высушить) или же не стирать готовые вещи, а подвергать их химической чистке.

Шерсть

Шерстяную пряжу вырабатывают из шерсти животных: овец, коз, верблюдов и т. д. Наиболее ценное сырье получают из пуха (подшерстка), дающего тонкое, мягкое, извитое шерстяное волокно.

К достоинствам шерсти относятся ее великолепные теплоизоляционные свойства, поэтому шерстяные материалы применяются, в основном, для зимней одежды. Недостатком шерсти является то, что она мнется и довольно быстро изнашивается.

Вещи, сшитые из чистой шерсти, выглядят весьма благородно и элегантно. Но в наше время из-за соображений практичности шерстяные волокна чаще всего смешиваются с синтетическими.

Искусственные материалы

Волокна, не принадлежащие к миру природы, делятся на искусственные и синтетические. Искусственные волокна получают из продуктов химической переработки природных полимеров (например, белков, нуклеиновых кислот, каучука). Синтетические же волокна получают из полимеров, не имеющихся в природе, то есть, синтезированных химическим путем.

Синтетические волокна быстро завоевали популярность во всем мире благодаря быстроте и дешевизне своего изготовления, а также тому, что они позволяют сберегать природные ресурс

Вискоза

Это волокно, полученное искусственным путем из целлюлозы. Целлюлоза содержится, в частности, в стволовой древесине, а также в коробочках хлопчатника и в лубяных волокнах. Производство вискозы считается выгодным благодаря доступности исходного сырья.

К несомненным достоинствам вискозного волокна относится то, что оно прекрасно впитывает влагу, легко окрашивается и хорошо утюжится. Вискоза очень хороша для изготовления летних вещей.

Недостатком вискозы является то, что она довольно быстро изнашивается, мнется, и легко рвется в мокром состоянии (что особенно неудобно при стирке). В настоящее время эти недостатки частично устраняются путем изготовления так называемой модифицированной вискозы.

Ацетат

Это искусственное волокно, формуемое из целлюлозы. Ацетат не является синтетикой, так как он вырабатывается хотя и искусственным путем, но из натурального сырья.

Достоинствами ацетатного волокна являются, прежде всего, его эластичность и мягкость. Оно мало мнется и хорошо пропускает ультрафиолетовые лучи. Недостатками ацетата являются следующие свойства: он непрочен, быстро изнашивается, неустойчив к воздействиям высокой температуры (например, довольно сильно деформируется в горячей воде и при глажении). Кроме того, ацетат достаточно сильно электризуется.

Ацетат применяется главным образом в производстве белья, преимущественно, женского. В настоящее время для улучшения качества изделий ацетат чаще всего смешивают с синтетическими или натуральными волокнами.

Полиэстер

Полиэстер является на сегодняшний день одним из самых распространенных синтетических волокон. К его достоинствам относится, во-первых, очень большая прочность (он фактически не изнашивается). Во-вторых, полиэстер практически не мнется (или моментально восстанавливается после смятия). Он не теряет своих качеств на свету или под воздействием разнообразных погодных явлений, он также стоек к органическим растворителям.

Недостатками полиэстера являются: недостаточная воздухопроницаемость, довольно сильная электризуемость и некоторая жесткость. В настоящее время эти недочеты частично устраняются модифицированием. Надо отметить, что синтетические волокна нового поколения обладают лучшими гигиеническими качествами, чем прежде. Они более мягкие на ощупь, лучше пропускают воздух и меньше электризуются.

Акрил

Акрил (полиакрилнитрил) – синтетическое волокно, по многим свойствам близкое к шерсти. На этикетках вещей акрил иногда обозначается аббревиатурой PAN (по первым буквам слова “поли-акрил-нитрил”).

Акрил устойчив к действию света и разнообразных погодных условий. Он стойко переносит воздействия кислот, слабых щелочей и других органических растворителей. Проще говоря, он хорошо переносит химическую чистку.

Достоинствами акрила являются его легкость, мягкость, а также визуальное сходство с шерстью. Его недостатки: во-первых, он довольно сильно электризуется, во-вторых, нередко растягивается при стирке, и, в-третьих, имеет обыкновение покрываться “катышками”. Акрил нельзя подвергать действию высоких температур. Его надо стирать в воде комнатной температуры и гладить слабо нагретым утюгом.

Из акрила изготавливают преимущественно верхний и бельевой трикотаж, а также шарфы, ковры и ткани. Акрил из-за соображений практичности часто смешивают с натуральными или другими синтетическими волокнами.

Полиамид

Полиамид является синтетическим волокном. Раньше его называли капроном, нейлоном или перлоном.

Полиамид необыкновенно прочен и эластичен. Он весьма устойчив к действию разнообразных химикатов, поэтому его часто используют для изготовления одежды, предназначенной для работы в агрессивной среде.

Существенными недостатками полиамида являются следующие: он почти не впитывает влагу, сильно электризуется, теряет свою прочность на ярком свету или при сильной жаре. Полиамид, как и все синтетические материалы, нельзя подвергать действию высоких температур.

В настоящее время полиамид в чистом виде практически не используется для изготовления тканей. Его почти всегда смешивают в тех или иных пропорциях с другими волокнами для достижения лучших потребительских свойств.

Полиуретан

Полиуретан (спандекс, лайкра) – синтетическое волокно, по своим механическим свойствам сходное с резиновыми нитями.

Полиуретан более чем другие синтетические волокна устойчив к кожному жиру и поту, а также к органическим растворителям. К числу недостатков полиуретана относится то, что он практически не впитывает воду и очень плохо пропускает воздух. Кроме того, полиуретан теряет свою прочность на ярком свету и при воздействии высоких температур. Поэтому вещи с большим содержанием спандекса или лайкры не годятся для жаркой и солнечной летней погоды.

Полиуретан применяется в основном в производстве чулочно-носочных и корсетных изделий, а также спортивной одежды. Кроме того, полиуретановые волокна (поскольку они обладают сходством с резиновыми нитями) нередко добавляются в трикотажные полотна для придания им большей эластичности.

Современные технологии коснулись всех сфер человеческой жизнедеятельности. Пожалуй, текстильная промышленность - самый яркий пример науки, поставленной на службу бытовой повседневности. Благодаря химическому синтезу человек научился получать волокна с заданными свойствами. Следует различать ткани искусственные и синтетические.

Синтетику производят из полимеров, полученных путем определенных химических реакций. Сырьем для нее служат нефтепродукты, природный газ или каменный уголь. Из синтетических тканей с особыми свойствами изготавливают спецодежду, защитную одежду для экстремальных условий, спортивную форму.

Искусственные волокна производят путем физической обработки сырья. Наиболее известным примером такой ткани является вискоза, получаемая из целлюлозы (древесины).

Ткани из синтетических волокон обладают рядом преимуществ и недостатков по сравнению с натуральными материалами.

Общие свойства синтетических волокон

Несмотря на все свое разнообразие, большинство искусственных материалов обладают общими особенностями. К достоинствам синтетических тканей относятся следующие качества.

  • Долговечность . Искусственные ткани имеют повышенную износостойкость, не подвержены гниению, порче вредителями и плесневыми грибками. Специальная технология отбеливания и последующего окрашивания волокна обеспечивает стойкость цвета. Некоторые группы синтетических тканей неустойчивы к воздействию солнечных лучей.
  • Легкость . Одежда из синтетики весит намного меньше, чем ее натуральные аналоги.
  • Быстро сохнут. Большинство синтетических волокон не впитывают влагу или имеют водоотталкивающие свойства, то есть обладают низкой гигроскопичностью.
  • Благодаря масштабному промышленному производству и дешевизне исходного сырья большинство искусственных тканей имеют низкую стоимость. При производстве получают высокую производительность труда и низкую себестоимость, что стимулирует развитие отрасли. Многие производители регулируют технологические характеристики материала в соответствии с пожеланиями крупных заказчиков.

Недостатки обуславливаются тем фактором, что искусственный материал может плохо влиять на живой организм.

  • Синтетика накапливает статическое электричество (электризуется).
  • Возможно возникновение аллергии, индивидуальная непереносимость химических компонентов.
  • Большинство искусственных тканей плохо впитывают влагу - соответственно, не впитывают пот и обладают низкими гигиеническими свойствами.
  • Не пропускают воздух - это также имеет значение для производства одежды и белья.

Некоторые свойства синтетических тканей могут иметь как положительный, так и отрицательный смысл в зависимости от того, как применяется материал. Например, если ткань не пропускает воздух, это негигиенично для Но верхняя спецодежда из такого материала будет весьма уместна для защиты от неблагоприятных погодных условий.

Производство синтетических тканей

Первые патенты на изобретение синтетических волокон относятся к периоду 30-х годов прошлого столетия. В 1932 году в Германии освоили выпуск поливинилхлоридного волокна. В 1935 году в лаборатории американской компании DuPont синтезировали полиамид. Материал получил название "нейлон". Промышленное производство его начали в 1938 году, а год спустя он получил широкое применение в текстильной промышленности.

В СССР курс на широкое внедрение достижений химической науки был взят в 60-х годах. Первоначально синтетику воспринимали как дешевый заменитель натуральных тканей, затем ее стали использовать для изготовления спецодежды и защитных костюмов. По мере развития научной базы стали создавать ткани с различными свойствами. Новые полимеры обладают неоспоримыми преимуществами по сравнению с натуральными тканями: они легче, прочнее и более устойчивы к воздействиям агрессивных сред.

Ткани искусственные и синтетические различаются по методу изготовления и показателям экономики производства. Сырье для производства синтетики намного дешевле и доступнее, поэтому именно эта отрасль промышленности получила приоритет в развитии. Макромолекулы волокна синтезируют из низкомолекулярных соединений. Современные технологии обеспечивают получение материала с заранее заданными характеристиками.

Нити формируют из расплавов или растворов. Они могут быть одиночными, комплексными или в виде жгутов для получения волокон определенной длины (затем из них производят пряжу). Кроме нитей, из исходной синтетической массы формируют пленочные материалы и штампованные изделия (детали обуви и одежды).

Разновидности синтетики

В настоящее время изобрели несколько тысяч химических волокон, и каждый год появляются новые материалы. По химической структуре все виды синтетических тканей делятся на две группы: карбоцепная и гетероцепная. Каждая группа подразделяется на подгруппы, обладающие сходными физическими и эксплуатационными свойствами.

Карбоцепная синтетика

Химическая цепочка макромолекулы карбоцепных синтетических тканей состоит в основном из атомов углерода (углеводородов). В группе выделяют следующие подгруппы:

  • полиакрилонитрильную;
  • поливинилхлоридную;
  • поливинилспиртовую;
  • полиэтиленовую;
  • полипропиленовую.

Гетероцепная синтетика

Это ткани из синтетических волокон, в молекулярный состав которых, кроме углерода, включены атомы других элементов: кислорода, азота, фтора, хлора, серы. Такие включения придают исходному материалу дополнительные свойства.

Виды синтетических тканей гетероцепной группы:

  • полиэфирные;
  • полиамидные;
  • полиуретановые.

Лайкра: полиуретановые синтетические ткани

Названия, применяемые торговыми корпорациями: эластан, лайкра, спандекс, неолан, дорластан. Полиуретановые нити способны к обратимым механическим деформациям (наподобие резины). Эластан способен растягиваться в 6-7 раз, свободно возвращаясь в исходное состояние. Имеет низкую температурную устойчивость: при повышении температуры до +120 °С волокно теряет свою эластичность.

Полиуретановые нити не применяют в чистом виде - их используют в качестве каркаса, навивая вокруг другие волокна. Материал, содержащий такую синтетику, обладает эластичностью, хорошо растягивается, упругий, устойчивый к истиранию, прекрасно пропускает воздух. Вещи из тканей с добавлением полиуретановых нитей не мнутся и сохраняют первоначальную форму, устойчивы к свету, долго сохраняют первоначальный цвет. Ткань не рекомендуется сильно отжимать, перекручивать, сушить в растянутом виде.

Капрон: полиамидная синтетика

Свое название материал получил благодаря амидной группе, входящей в состав ткани. Капрон и нейлон - наиболее известные представители этой группы. Основные свойства: повышенная прочность, хорошо держит форму, не подвержен гниению, легкий. В свое время капрон заменил шелк, применяемый для изготовления парашютов.

У синтетических волокон полиамидной группы низкая устойчивость к повышенным температурам (начинает плавиться при +215 °С), они желтеют на свету и под воздействием пота. Материал не впитывает влагу и быстро сохнет, накапливает и плохо удерживает тепло. Из него производят женские колготки и леггинсы. В состав ткани капрон и нейлон вводят в количестве 10-15%, что повышает прочность натуральных материалов без ухудшения их гигиенических свойств. Из таких материалов производят носки и

Другие торговые названия синтетических материалов полиамидной группы: анид, перлон, мерил, таслан, джордан и хеланка.

Велсофт - толстая ткань с ворсом, составляет конкуренцию махре. Из него шьют детскую одежду, халаты и пижамы, вещи для дома (полотенца и пледы). Материал приятен на ощупь, хорошо пропускает воздух, не мнется, не садится, не линяет. Устойчив к стирке, быстро сохнет. Набивной рисунок не выцветает со временем.

Лавсан: полиэфирные волокна

Полиэфирная синтетика обладает повышенной упругостью, износостойкостью, ткани из нее не садятся, не мнутся и хорошо держат форму. Основное достоинство по сравнению с другими группами синтетических тканей - повышенная термостойкость (выдерживает свыше +170 °С). Материал жесткий, не впитывает влагу, не собирает пыль, не выгорает на солнце. В чистом виде его используют для изготовления штор и занавесок. В смеси с применяют для изготовления плательных и костюмных тканей, а также материала для пальто и Полиэфирное волокно обеспечивает устойчивость к истиранию и сминанию, а натуральные нити обуславливают гигиеничность, которой не обладают синтетические ткани. Названия тканей из полиэфирных материалов: лавсан, полиэстер, терилен, тревира, тергаль, диолен, дакрон.

Флис - синтетическая мягкая ткань из полиэстера, по виду похожа на овечью шерсть. Одежда из флиса мягкая, легкая, теплая, воздухопроницаемая, эластичная. Материал легко стирается, быстро сохнет и не нуждается в глажке. Флис не вызывает аллергию, поэтому широко применяется для изготовления детской одежды. Со временем ткань растягивается и теряет форму.

Полисатин изготавливают из полиэстера в чистом виде или в комбинации с хлопком. Материал плотный, гладкий и слегка блестящий. Быстро сохнет, не садится, не изнашивается, не линяет. Применяют для изготовления постельного белья, изделий для дома (штор, скатертей, обивки для мебели), домашней одежды, галстуков и шарфов. Очень популярное сегодня постельное белье с 3D-рисунком изготавливают именно из полисатина.

Акрил: полиакрилонитрильные материалы

По механическим свойствам близок к волокнам шерсти, поэтому акрил иногда называют «искусственной шерстью». Синтетика устойчива к солнечным лучам, она термостойкая, прекрасно держит форму. Не впитывает влагу, жесткая, электризуется, истирается.

Применяют в комбинации с шерстью для производства ткани для мебели, детских матрасов, пошива верхней одежды и изготовления искусственного меха. Акрил не образует катышков, что делает его незаменимой добавкой в шерстяную пряжу для вязания. Вещи из комбинированной пряжи меньше растягиваются, они более прочные и легкие.

Торговые названия полиакрилонитрильных материалов: акрилан, нитрон, кашмилон, дралон, долан, орлон.

Спектра и дайнема: полиолефиновые волокна

В этой группе различают полиэтиленовые и Наиболее легкие из всех видов синтетики, полиолефиновые материалы не тонут в воде, отличаются низкой гигроскопичностью и хорошими теплоизоляционными свойствами, растяжимость волокна практически равна нулю. Имеют низкую температурную устойчивость - до +115 °С. Применяются при создании двухслойных материалов, для пошива спортивной и рыбацкой одежды, фильтровальных и обивочных материалов, брезента, ковров. В комбинации с натуральными волокнами - для производства нижнего белья и чулочно-носочных изделий.

Торговые названия: спектра, дайнема, текмилон, геркулон, ульстрен, найден, мераклон.

Поливинилхлоридные синтетические ткани

Материал отличается высокой устойчивостью к химически агрессивным веществам, низкой электропроводностью и неустойчивостью к температурным воздействиям (разрушается при 100°С). После температурной обработки дает усадку.

В чистом виде из него изготавливают защитную спецодежду. С его помощью получается плотная синтетическая ткань - искусственная кожа, также изготавливают искусственный мех и ковровые покрытия.

Торговые названия: тевирон, хлорин, виньон.

Поливинилспиртовые волокна

К этой группе относятся винол, мтилан, винилон, куралон, виналон. Они обладают всеми достоинствами синтетики: прочные, износоустойчивые, устойчивы к свету и температурным воздействиям. По растяжимости и упругости имеют средние показатели. Отличительная особенность - хорошо впитывают влагу, изделия из синтетических тканей этой группы обладают высокой гигроскопичностью, сравнимой со свойствами хлопковых изделий. Под воздействием воды винол удлиняется и немного усаживается, его прочность понижается. По сравнению с другим химическими волокнами, он менее устойчив к химическим воздействиям.

Винол применяется для изготовления одежды, нижнего белья, в комбинации с хлопком и вискозой - для производства чулочно-носочных изделий. Материал не скатывается, не вытирается, имеет приятный блеск. Недостаток изделий из винола - они быстро загрязняются.

Мтилан используют для производства хирургических нитей.

Комбинация различных волокон дает интересные технологические характеристики. Яркий пример - широко известная на сегодняшний день микрофибра. Изготавливают ее из комбинации нейлоновых и полиэфирных волокон. Микрофибра не скатывается, не линяет, обладает повышенной гигроскопичностью, при этом быстро сохнет. Ее используют для производства трикотажных и нетканого полотна. В зависимости от толщины волокна и его модификации варьируют мягкость и износостойкость конечного продукта. Микроволокно не смешивают с другими волокнами, уход за изделиями чрезвычайно прост - они не боятся стирки, химчистки и температурных воздействий. Благодаря множеству воздушных пор, ткань способствует поддержанию оптимальной температуры тела, но в то же время прекрасно защищает от ветра. Из микрофибры изготавливают спортивную и верхнюю одежду, домашний текстиль, салфетки и губки для клининга.

Как видим, химически синтезированные волокна широко применяются в производстве товаров легкой промышленности. Из них изготавливают спортивную и спецодежду, ткани для мебели и декорирования интерьера помещений, весь спектр повседневной одежды: от нижнего белья до материалов для пальто и искусственного меха. Современные ткани обладают рядом достоинств, недоступных их предшественникам: они могут быть гигроскопичными, «дышащими» и хорошо сохранять тепло. Комбинация различных волокон в одной нити, а также создание многослойных тканей позволяют производителям полностью удовлетворять запросы современного мира.

Текстильными волокнами называют гибкие прочные тела с малыми поперечными размерами, ограниченной длины, пригодные для изготовления текстильных изделий.

Текстильные волокна подразделяют на два класса: натуральные и химические. По происхождению волокнообразующего вещества натуральные волокна подразделяют на три подкласса: растительного, животного и минерального происхождения, химические волокна — на два подкласса: искусственные и синтетические.

Искусственное волокно — химическое волокно, изготовленное из природных высокомолекулярных веществ.

Синтетическое волокно — химическое волокно, изготовленное из синтетических высокомолекулярных веществ.

Волокна могут быть элементарными и комплексными.

Элементарное — волокно, не делящееся в продольном направлении без разрушения (хлопок, лен, шерсть, вискоза, капрон и др.). Комплексное волокно состоит из продольно скрепленных элементарных волокон.

Волокна являются исходным материалом для изготовления текстильных товаров и могут применяться как в естественном, так и в смешанном виде. Свойства волокон влияют на технологический процесс переработки их в пряжу. Поэтому важно знать основные свойства волокон и их характеристики: толщину, Длину, извитость. От толщины волокон и пряжи зависит толщина получаемых из них изделий, которая влияет на их потребительские свойства.

Пряжа из тонких синтетических волокон более склонна к пиллингу — образованию закатанных волокон на поверхности материала. Чем длиннее волокна, тем пряжа из них ровнее по толщине и прочнее.

Натуральные волокна

Хлопок — это волокна, покрывающие семена растений хлопчатника. Хлопчатник — однолетнее растение высотой 0,6—1,7 м, произрастающее в районах с жарким климатом. Основным веществом (94—96 %), из которого состоит хлопковое волокно, является целлюлоза. Хлопковое волокно нормальной зрелости под микроскопом имеет вид плоской ленточки со штопорообразной извитостью и с каналом, заполненным внутри воздухом. Один конец волокна со стороны его отрыва от семени хлопчатника открыт, другой, имеющий коническую форму, закрыт.

Количество волокна зависит от степени его зрелости.

Хлопковым волокном присуща извитость. Волокна нормальной зрелости имеют наибольшую извитость — 40—120 извитков на 1 см.

Длина хлопковых волокон колеблется от 1 до 55 мм. В зависимости от длины волокон хлопок делят на коротковолокнистый (20—27 мм), средневолокнистый (28—34 мм) и длинноволокнистый (35—50 мм). Хлопок длиной менее 20 мм называют непряд-иым, т. е. из него невозможно выработать пряжу. Между длиной и толщиной хлопковых волокон существует определенная зависимость: чем длиннее волокна, тем они тоньше. Поэтому длинноволокнистый хлопок называют и тонковолокнистым, он имеет толщину 125—167 миллитекс (мтекс). Толщина средневолокнистого хлопка составляет 167—220 мтекс, коротковолокнистого — 220— 333 мтекс.

Толщина волокон выражается через линейную плотность в гексах. Текс показывает, сколько граммов весит отрезок волокна длиной в 1 км. Миллитекс = мг/км.

От длины и толщины волокон зависит выбор системы прядения (получения пряжи), что в свою очередь влияет на качество пряжи и ткани. Так, из длинноволокнистого (тонковолокнистого) хлопка получают тонкую, ровную по толщине, с малой ворсистостью, плотную, прочную пряжу 5,0 текс и выше, используемую для изготовления высококачественных тонких и легких тканей: батиста, маркизета, вольты, сатина гребенного и др.

Из средневолокнистого хлопка изготовляют пряжу средней и выше средней линейной плотности 11,8—84,0 текс, из которой вырабатывают основную массу хлопчатобумажных тканей: ситцы, бязи, миткали, сатины кардные, вельветы и др.

Из коротковолокнистого хлопка получают рыхлую, толстую, неровную по толщине, пушистую, иногда с посторонними примесями пряжу — 55—400 текс, используемую для производства фланели, бумазеи, байки и др.

Хлопковое волокно обладает многочисленными положительными свойствами. Оно имеет высокую гигроскопичность (8— 12 %), поэтому хлопчатобумажные ткани обладают хорошими гигиеническими свойствами.

Волокна достаточно прочные. Отличительной особенностью хлопкового волокна является повышенная прочность на разрыв в мокром состоянии на 15—17 %, что объясняется увеличением площади поперечного сечения волокна вдвое в результате его сильной набухаемости в воде.

Хлопок имеет высокую термостойкость — разрушение волокон до 140°С не происходит.

Хлопковое волокно более стойкое, чем вискозное и натуральный шелк, к действию света, но по светостойкости уступает лубяным и шерстяным волокнам. Хлопок обладает высокой устойчивостью к действию щелочей, что используется при отделке хлопчатобумажных тканей (отделка — мерсеризация, обработка раствором едкого натра). При этом волокна сильно набухают, усаживаются, становятся неизвитыми, гладкими, стенки их утолщаются, канал суживается, прочность повышается, блеск усиливается; волокна лучше окрашиваются, прочно удерживая краситель. Из-за малой упругости хлопковое волокно имеет высокую сминаемость, большую усадку, низкую стойкость к воздействию кислотой. Хлопок применяется для производства тканей разного назначения, трикотажа, нетканых полотен, гардинно-тюлевых и кружевных изделий, швейных ниток, тесьмы, шнурков, лент и др. Хлопковый пух применяют в производстве медицинской, одежной, мебельной ваты.

Лубяные волокна получают из стеблей, листьев или оболочек плодов различных растений. Стеблевыми лубяными волокнами являются лен, пенька, джут, кенаф и др., листовыми — сизаль и др., плодовыми — койр, получаемый из покрова скорлупы кокосовых орехов. Из лубяных волокон наибольшую ценность представляют льняные.

Лен — однолетнее травянистое растение, имеет две разновидности: лен-долгунец и лен-кудряш. Из льна-долгунца получают волокна. Основным веществом, из которого состоят лубяные волокна, является целлюлоза (около 75 %). К сопутствующим веществам относятся: лигнин, пектиновые, жировосковые, азотистые, красящие, зольные вещества, вода. Льняное волокно имеет четыре-шесть граней с заостренными концами и характерными штрихами (сдвигами) на отдельных участках, возникшими) результате механических воздействий на волокно при его получении.

В отличие от хлопкового льняное волокно имеет сравнительно толстые стенки, узкий канал, закрытый с обоих концов; поверхность волокна более ровная и гладкая, поэтому льняные ткани меньше, чем хлопчатобумажные, загрязняются и легче отстирываются. Эти свойства льна особенно ценны для бельевых полотен. Льняное волокно уникально и тем, что при высокой гигроскопичности (12 %) оно быстрее других текстильных волокон поглощает и выделяет влагу; оно прочнее, чем хлопковое, удлинение при разрыве — 2—3 %. Содержание в льняном волокне лигнина делает его устойчивым к действию света, погоды, микроорганизмов. Термического разрушения волокна не происходит до + 160°С. Химические свойства льняного волокна аналогичны хлопковому, т. е. оно устойчиво к действию щелочей, но не устойчиво к кислотам. В связи с тем, что льняные ткани имеют свой естественный достаточно красивый шелковистый блеск, мерсеризации их не подвергают.

Однако льняное волокно сильно сминается из-за низкой упругости, трудно отбеливается и окрашивается.

Благодаря высоким гигиеническим и прочностным свойствам из льняных волокон получают бельевые ткани (для нательного, столового, постельного белья), летние костюмно-платьевые ткани. При этом около половины льняных тканей вырабатываются в смеси с другими волокнами, значительная часть которых приходится на полульняные бельевые ткани с хлопчатобумажной пряжей по основе.

Из льняных волокон изготавливают также парусины, пожарные рукава, шнуры, обувные нитки, а из очесов льна — более грубые ткани: мешочные, холсты, брезенты, парусины и др.

Пеньку получают из однолетнего растения конопли. Из волокон вырабатывают канаты, веревки, шпагаты, упаковочные и мешочные ткани.

Кенаф, джут получают из однолетних растений семейства мальвовых и липовых. Из кенафа и джута вырабатывают мешочные и тарные ткани; используют для транспортирования и хранения влагоемких товаров.

Шерсть — волокно из снятого волосяного покрова овец, коз, верблюдов, кроликов и других животных. Шерсть, снятую стрижкой в виде цельного волосяного покрова, называют руном. Шерстяные волокна состоят из белка кератина, содержащего, как и другие белки, аминокислоты.

Шерстяные волокна под микроскопом можно легко отличить от других волокон — их наружная поверхность покрыта чешуйками. Чешуйчатый слой состоит из мелких пластинок в форме

конусообразных колец, нанизанных друг на друга, и представляет собой ороговевшие клетки. За чешуйчатым слоем следует корковый — основной, от которого зависят свойства волокна и изделий из них. В волокне может быть и третий — сердцевинный слой, состоящий из рыхлых, заполненных воздухом клеток. Под микроскопом видна и своеобразная извитость шерстяных волокон. В зависимости от того, какие слои в шерсти присутствуют, она может быть следующих видов: пух, переходный волос, ость, мертвый волос.

Пух — тонкое, сильно извитое, шелковистое волокно без сердцевинного слоя. Переходный волос имеет прерывистый рыхлый сердцевинный слой, благодаря чему он неравномерен по толщине, прочности, имеет меньшую извитость.

Ость и мертвый волос имеют большой сердцевинный слой, характеризуются большой толщиной, отсутствием извитости, повышенной жесткостью и хрупкостью, малой прочностью.

В зависимости от толщины волокон и однородности состава шерсть подразделяют на тонкую, полутонкую, полугрубую и грубую. Важными показателями качества шерстяного волокна являются его длина и толщина. Длина шерсти влияет на технологию получения пряжи, ее качество и качество готовых изделий. Из длинных волокон (55—120 мм) получают гребенную (камвольную) пряжу — тонкую, ровную по толщине, плотную, гладкую.

Из коротких волокон (до 55 мм) получают аппаратную (суконную) пряжу, которая, в отличие от камвольной, более толстая, рыхлая, пушистая, с неровностями по толщине.

Свойства шерсти по-своему уникальны — ей присуща высокая свойлачиваемость, что объясняется наличием на поверхности волокна чешуйчатого слоя.

Благодаря этому свойству из шерсти производятся фетр, суконные ткани, войлок, одеяла, валяная обувь. Шерсть обладает высокими теплозащитными свойствами, имеет высокую упругость. Щелочи на шерсть действуют разрушающе, к кислотам она устойчива. Поэтому если шерстяные волокна, содержащие растительные примеси, обработать раствором кислоты, то эти примеси растворяются, а шерстяные волокна остаются в чистом виде. Такой процесс очистки шерсти называют карбонизацией.

Гигроскопичность шерсти высокая (15—17 %), но в отличие от других волокон она медленно поглощает и отдает влагу, оставаясь на ощупь сухой. В воде она сильно набухает, площадь поперечного сечения при этом увеличивается на 30—35 %. Увлажненное волокно в растянутом состоянии можно зафиксировать сушкой, при повторном увлажнении длина волокна снова восстанавливается. Это свойство шерсти учитывается при влажно-тепловой обработке швейных изделий из шерстяных тканей для сутюжки и оттяжки их отдельных деталей.

Шерсть — достаточно прочное волокно, удлинение при разрыве высокое; в мокром состоянии волокна на 30 % теряют прочность. Недостатком шерсти является малая термостойкость — при температуре 100—110°С волокна становятся ломкими, жесткими, снижается их прочность.

Из тонкой и полутонкой шерсти, как в чистом виде, так и в смеси с другими волокнами (хлопковыми, вискозными, капроновыми, лавсановыми, нитроновыми), вырабатывают камвольные и тонкосуконные платьевые, костюмные, пальтовые ткани, нетканые полотна, трикотажные изделия, платки, одеяла; из полугрубой и грубой — грубосуконные пальтовые ткани, валяную обувь, войлок.

Козий пух применяют в основном для выработки платков, трикотажных изделий и некоторых платьево-костюмных, пальтовых тканей; верблюжью шерсть — для производства одеял и национальных изделий. Из восстановленной шерсти получают менее качественные ткани, валяную обувь, нетканые материалы, строительный войлок.

Натуральный шелк по своим свойствам и себестоимости — ценнейшее текстильное сырье. Получают его разматыванием коконов, образуемых гусеницами шелкопрядов. Наибольшее распространение и ценность имеет шелк тутового шелкопряда, на долю которого приходится 90 % мирового производства шелка.

Родина шелка — Китай, где тутовый шелкопряд культивировался за 3000 лет до н. э. Получение шелка проходит следующие стадии: бабочка тутового шелкопряда откладывает яички (грену), из которых выводятся гусеницы длиной около 3 мм. Питаются они листьями тутового дерева, отсюда и название шелкопряда. Через месяц гусеница, накопив в себе натуральный шелк, через шелкоотделительные железы, расположенные по обе стороны тела, окутывает себя непрерывной нитью в 40—45 слоев и образует кокон. Намотка кокона длится 3—4 дня. Внутри кокона гусеница превращается в бабочку, которая, проделав отверстие в коконе щелочной жидкостью, выходит из него. Такой кокон для дальнейшей размотки непригоден. Коконные нити очень тонкие, поэтому разматывают их одновременно с нескольких коконов (6—8), соединяя в одну комплексную нить. Такая нить называется шелком-сырцом. Общая длина разматываемой нити составляет в среднем 1000—1300 м.

Оставшийся после размотки кокона сдир (тонкая, не поддающаяся размотке оболочка, содержащая около 20 % длины нити), бракованные коконы перерабатывают в короткие волокна, из которых получают шелковую пряжу.

Из всех природных волокон натуральный шелк — самое легкое волокно и наряду с красивым внешним видом обладает высокой гигроскопичностью (11 %), мягкостью, шелковистостью, малой сминаемостью.

Натуральный шелк обладает высокой прочностью. Разрывная нагрузка шелка в мокром состоянии снижается примерно на 15 %. Натуральный шелк устойчив к кислотам, к щелочам — нет, имеет низкую светостойкость, относительно низкую термостойкость (100—110°С) и высокую усадку. Из шелка вырабатывают платьевые, блузочные ткани, также швейные нитки, ленты, шнурки.

Химические волокна получают путем химической переработки природных (целлюлозы, белков и др.) или синтетических высокомолекулярных веществ (полиамидов, полиэфиров и др.).

Технологический процесс изготовления химических волокон состоит из трех основных стадий — получения прядильного раствора, формирования из него волокон и отделки волокон. Полученный прядильный раствор поступает в фильеры — металлические колпачки с маленькими отверстиями (рис. 6) — и вытекает из них в виде непрерывных струек, которые сухим или мокрым способом (воздухом или водой) затвердевают и превращаются в элементарные нити.

Форма отверстий фильер обычно круглая, а для получения профилированных нитей используют фильеры с отверстиями в виде треугольника, многогранника, звездочек и др.

При выработке коротких волокон используют фильеры с большим количеством отверстий. Элементарные нити со многих фильер соединяют в один жгут и разрезают на волокна необходимой длины, которая соответствует длине натуральных волокон. Сформированные волокна подвергают отделке.

В зависимости от вида отделки получают волокна белые, окрашенные, блестящие и матированные.

Искусственные волокна

Искусственные волокна получают из природных высокомолекулярных соединений — целлюлозы, белков, металлов, их сплавов, силикатных стекол.

Наиболее распространенное искусственное волокно — вискозное, вырабатывается из целлюлозы. Для изготовления вискозного волокна используют обычно древесную, преимущественно еловую целлюлозу. Древесину расщепляют, обрабатывают химическими реагентами, превращают в прядильный раствор — вискозу.

Вискозные волокна вырабатывают в виде комплексных нитей и волокон, их применение различно.

Вискозное волокно гигиенично, имеет высокую гигроскопичность (11—12 %), изделия из вискозы хорошо впитывают влагу; оно устойчиво к щелочам; термостойкость вискозного волокна высокая.

Но вискозное волокно имеет недостатки:

— из-за низкой упругости сильно сминается;

— высокая усадка волокна (6—8 %);

— в мокром состоянии теряет прочность (до 50—60 %). Изделия не рекомендуется тереть и выкручивать.

Из других искусственных волокон используют ацетатные, триацетатные волокна.

Металлические нити представляют собой мононити круглого или плоского сечений из алюминиевой фольги, меди и ее сплавов, серебра, золота и других металлов. Алюнит (люрекс) — металлическая нить из алюминиевой фольги, покрытой с обеих сторон защитной противоокислительной пленкой.

Синтетические волокна

Синтетические волокна получают из природных, низкомолекулярных веществ (мономеров), которые путем химического синтеза превращаются в высокомолекулярные (полимеры).

Полиамидные (капроновые) волокна получают из полимера капролактама — низкомолекулярного кристаллического вещества, которое вырабатывают из каменного угля или нефти. В других странах капроновые волокна называются иначе: в США, Англии — нейлон, в Германии — дедерон.

Полиэфирные волокна (лавсан) выпускают под различными названиями: в Англии, Канаде — терилен, в США— дакрон, в Японии — полиэстер. Наличие ценных потребительских свойств полиэфирных волокон обусловило их широкое применение в текстильном, трикотажном производстве, в производстве искусственного меха.

Полиакрилонитрильные волокна (акрил, нитрон): в США — орлон, в Англии — куртель, в Японии — кашмилон. Нитроновое волокно по своим свойствам и внешнему виду напоминает шерсть. Волокна в чистом виде и в смеси с шерстью используют для выработки платьево-костюмных тканей, искусственного меха, различных трикотажных изделий, гардинно-тюлевых изделий.

Поливинилхлоридное (ПВХ), хлориновое волокно вырабатывают из раствора поливинилхлоридной смолы в диметилформамиде (ПВХ) и из хлорированного поливинилхлорида. Эти волокна значительно отличаются от других синтетических волокон: в результате малой теплопроводности обладают высокой теплоизоляционной способностью, не горят, не гниют, очень стойки к химическим воздействиям.

Полиуретановые волокна. Обработкой полиуретановой смолы получают волокно спандекс или лайкра, вырабатываемое в виде мононити. Отличается высокой эластичностью, растяжимость его до 800 %. Применяется вместо резиновой жилки в производстве предметов женского туалета, высокорастяжимого трикотажа.

Алюнит — металлические нити из алюминиевой фольги, покрытые полимерной пленкой, защищающей металл от окисления. Для упрочнения алюнит скручивают с капроновыми нитями.

Аппаратная хлопчатобумажная пряжа — пушистая, рыхлая, толстая пряжа, получаемая из коротких волокон, характеризуется небольшой прочностью.

Аппаратная шерстяная пряжа — вырабатывается по аппаратной системе из коротковолокнистой шерсти и угаров (отходов прядильного производства) толщиной 42-500 текс, рыхлая, пушистая, неравномерная по толщине и прочности.

Армированная нить — текстильная нить, имеющая сложную структуру, состоящую из стержня оплетки, т. е. осевая нить обкручена или плотно оплетена волокнами или другими нитями.

Асбестовое волокно — минеральное волокно, содержится в горных породах. Наиболее длинные волокна (10 мм и более) перерабатываются в пряжу, идущую для изготовления технических тканей, лент, шнуров, используемых главным образом для теплоизоляции.

Ацетатное волокно — искусственное волокно, получают из растворов частично омыленной вторичной ацетилцеллюлозы в ацетате сухим способом (продавливание через фильеру и высушивание).

Вискозное волокно — искусственное волокно, вырабатываемое из древесной целлюлозы, переведенной путем химических преобразований в вязкую жидкость (вискозу), которая продавливается через фильеры и восстанавливается до гидрат-целлюлозы.

Восстановленная (регенированная) шерсть —дополнительный источник сырья для легкой промышленности. Получают из обрывков пряжи при прядении и ткачестве, из лоскутов шерстяных тканей и трикотажа в швейном производстве и утильного сырья (ткани и трикотажные изделия, бывшие в употреблении). Используют в небольших количествах (20-35%) в смеске с обычной шерстью и с добавлением 10-30% синтетического волокна для снижения себестоимости продукции.

Высокообъемная пряжа — пряжа, дополнительная объемность которой получена путем химической и/или тепловой обработки.

Гребенная хлопчатобумажная пряжа — тонкая, гладкая, ровная по толщине пряжа, получаемая из длинноволокнистого хлопка, характеризуется наибольшей прочностью.

Гребенная (камвольная) шерстяная пряжа — тонкая, гладкая, вырабатывается из длинноволокнистого шерстяного волокна по гребенной системе прядения, толщиной 15,5-42 текс.

Грубая шерсть — неоднородная шерсть, состоящая преимущественно из остевых волос толщиной 41 мкм и более. Получают при стрижке овец грубошерстных пород (кавказская, тушинская и др.).

Джут, кенаф — волокна, получаемые из стеблей растений тех же наименований, достигающих роста 3 м и более. В сухих стеблях содержится до 21% волокна, используемого для технических, упаковочных, мебельных тканей и ковров. Наибольшие посевные площади — в Индии, Бангладеше.

Извитое волокно — натуральное или химическое волокно, обладающее извитостью.

Искусственное волокно (нить) — химическое волокно (нить), изготовленное в результате производственного процесса из природных полимеров путем химической переработки.

Кардная хлопчатобумажная пряжа —толстая, неравномерная пряжа, получаемая из хлопка средней длины. Применяется для производства хлопчатобумажных тканей.

Комбинированная нить — текстильная нить, состоящая из комплексных нитей или мононитей, или из комплексных нитей, различающихся по химическому составу или структуре, различных по волокнистому составу и структуре.

Комплексная нить — текстильная нить, состоящая из двух или более продольно соединенных и скрученных элементарных волокон.

Креп-нить — характеризуется высокой (креповой) круткой. Для получения крепа натурального шелка скручивают 2-5 нитей шелка-сырца до 2200-3200 кр/м, а затем запаривают их для фиксации крутки. Креп из комплексных химических нитей получают скручиванием одной нити до 1500-200 кр/м. Благодаря высокой крутке ткани из креповых нитей характеризуются значительной упругостью, жесткостью, шероховатостью.

Крученая нить — текстильная нить, скрученная из одной и более текстильных нитей.

Крученая пряжа — текстильная нить, скрученная из двух и более пряж.

Лен — лубяное волокно, получаемое из стеблей растения того же наименования. На волокно культивируется лен-долгунец с длинным (до 1 м) и тонким (в диаметре 1-2 мм) стеблем.

Лубяное волокно — длинные прозенхимные клетки в стеблях различных растений, лишенные части содержимого растительного стебля. Волокна лубяных культур (льна, крапивы, конопли и др.) используют для выработки пряжи.

Льняная пряжа мокрого прядения — вырабатывается толщиной 24-200 текс из длинного волокна и очесов, при этом ровница (полуфабрикат льняного производства) — тонкая и равномерная по толщине перед прядением смачивается.

Льняная пряжа сухого прядения — вырабатывается из льняного волокна и очесов, неравномерная по толщине, толщиной 33-666 текс.

Люрекс — нить в виде блестящей узкой металлической полоски, покрытой фольгой, или металлизированной пленки.

Медноаммиачное волокно — вырабатывают из раствора целлюлозы в медно-аммиачном комплексе, по свойствам близко к вискозным. Производство ограничено, так как связано со значительным расходом меди (50 г на 1 кг волокна).

Многокруточная нить — крученая нить из двух и более текстильных нитей, одна из которых однокруточная, скрученных вместе за одну и более операций кручения.

Модифицированная нить (волокно) — текстильная нить (волокно) с заданными специфическими свойствами, полученная путем дополнительной химической или физической модификации.

Мооскреп — нить двойной крутки. Мооскреп из натурального шелка вырабатывают скручиванием креповой нити с 2-3 нитями шелка-сырца. Мооскреп из искусственных нитей получают трощением и последующим скручиванием креповой нити и нити пологой крутки. Второе скручивание производится в направлении креповой нити примерно на 200 кр/м. Креповая нить является стержневой, а нить шелка-сырца или нить пологой крутки — нагонной, обвивает стержневую.

Муслин — тонкая нить средней крутки. Муслин из натурального шелка получают скручиванием одной нити шелка-сырца до 1500-1800 кр/м, с последующей запаркой для фиксации крутки. Муслин из комплексной химической нити (вискозной, ацетатной, капроновой) получают скручиванием нити до 600-800 кр/м.

Мэрон (капроновые), мэлан (лавсановые) — растяжимые нити, получают как и высокорастяжимые нити, путем химической обработки, но с дополнительной термообработкой при некотором растяжении. В результате этого спиралеобразная извитость, характерная для эластика, переходит в синусоидальную и фиксируется в таком состоянии. Нити мягкие, пушистые, растяжимость 30-50%.

Натуральное волокно — текстильное волокно природного происхождения.

Натуральный шелк — продукт выделения шелкоотделительных желез гусениц-шелкопрядов — белкового вещества фиброина — в виде тонкой непрерывной нити, завитой в кокон. В момент образования кокона гусеницы выделяют две тонкие шелковины, которые при выходе на воздух застывают. Одновременно выделяется белковое вещество серицин, которое склеивает шелковины вместе.

Неоднородная нить — текстильная нить, состоящая из волокон разной природы.

Одиночная нить — нетрощеная, некрученая нить или нетрощеная крученая нить, получившая крутку за одну операцию кручения.

Однокруточная нить — крученая нить из двух или более одиночных нитей, скрученных вместе за одну операцию кручения.

Однородная нить — текстильная нить, состоящая из текстильных волокон одной природы.

Однородная пряжа — пряжа, состоящая из волокон одного вида.

Пенька — вырабатывается из однолетнего высокого растения конопли. Пеньку подразделяют на ниточную (тонкую), идущую для изготовления пряжи, техническую (толстую, грубую), из которой вырабатывают технические ткани, а также канатную — для канатов.

Переслежистая пряжа — пряжа с чередованием залетных утолщений и утонений.

Пленочная текстильная нить — плоская комплексная нить, полученная расщеплением текстильной пленки или экструдированием в виде полоски.

Полиакрилонитрильное волокно (нитрон) — синтетическое волокно, формуемое из растворов полиакрилонитрила или сополимеров, содержащих более 85% (по массе) акрилонитрила по мокрому или сухому методу. Выпускается под следующими торговыми названиями: орлон, акрилон (США), кашмилон (Япония), дралон (Германия) и др.

Полиамидное волокно — синтетическое волокно, формуемое из расплавов полиамидов. Производится из поликапролактама под следующими торговыми названиями: капрон (Россия), найлон (Япония), перлон, дедерон (Германия), амелан (Япония) и др.

Поливинилспиртовое волокно — синтетическое волокно, формуемое из растворов поливинилового спирта, выпускается во многих странах под следующими названиями: винол (Россия), винилон, куралон (Япония), виналон (КНДР) и др.

Поливинилхлоридное волокно — синтетическое волокно, формуемое из растворов поливинилхлорида, перхлорвиниловой смолы или сополимеров винилхлорида по сухому или мокрому методу; выпускается в виде непрерывных нитей или штапельных волокон под следующими торговыми названиями: хлорин, саран, виньон (США), ровиль (Франция), тевирон (Япония) и др.

Полинозное волокно — разновидность вискозного волокна с высокой степенью ориентации макромолекул в структуре и однородностью структуры в поперечном сечении, в результате чего оно имеют высокую прочность, низкое относительное удлинение.

Полипропиленовое волокно — синтетическое волокно, формуемое из расплава полипропилена. Используется для изготовления из-за низкой плотности нетонущих канатов, сетей, фильтровальных и обивочных материалов; штапельные полипропиленовые волокна — для выпуска одеял, тканей, для верхней одежды. Текстурированные (высокообъемные) полипропиленовые волокна находят применение главным образом в производстве ковров. Выпускаются под различными торговыми названиями: геркулон (США), ульстрен (Великобритания), найден (Япония), мераклон (Италия) и др.

Полиэфирное волокно (лавсан) — синтетическое волокно, формуемое из расплава полиэтилентерефталата (синтеза продуктов перегонки нефти). Техническую нить из полиэфирных волокон используют при изготовлении транспортерных лент, приводных ремней, канатов, парусов и т. д. Из моноволокна делают сетки для бумагоделательных машин, струны для ракеток и т. д. Методом “ложной крутки” получают высокообъемную нить.

Полугрубая шерсть — состоит из волокон переходного волоса и сравнительно тонких волокон ости толщиной 35-40 мкм. Получают ее от тонкорунно-грубошерстных овец (задонские, степные, волжские и др.).

Полутонкая шерсть — однородная шерсть, состоящая из грубых волокон, толщиной 25-35 мкм, относящихся к пуху или переходному волосу. Получают при стрижке полутонкорунных овец (прекосы, казахские, куйбышевские и др.).

Пряжа — текстильная нить, состоящая из волокон ограниченной длины (натуральных или штапельных химических), соединенных в длинную нить путем прядения (ориентации и скручивания волокон).

Пряжа с непсом — пряжа с впряденными включениями волокон другого цвета или вида.

Рами — волокно, вырабатываемое из многолетних трав и полукустарников семейства крапивных, содержащих в сухих стеблях до 21% прочного шелковистого волокна.

Руно — сплошной пласт, получаемый при стрижке овец, состоящий из прочно удерживающихся друг около друга пучков шерсти — штапелей.

Сиблон — модифицированное прочное вискозное волокно с однородными свойствами как внешних, так и внутренних слоев, достигаемыми регенерацией целлюлозы при низких температурах осадительной ванны и вытеканием волокна при высокой температуре (95 °С).

Синтетическое волокно (нить) — химическое волокно (нить), изготовленное из синтетических волокнообразующих полимеров (полиамид, полиэфир и др.).

Смешанная пряжа — пряжа, состоящая из двух или нескольких видов волокон.

Спандекс — полиуретановая мононить с высокой растяжимостью — до 700-800%.

Стеклянные нити — нити, получаемые при продавливании расплавленной стеклянной массы через тонкие отверстия. Вытекающие струйки, остывая, превращаются в гибкие нити. Основное применение — тепло- и электроизоляция, фильтры.

Суровая пряжа — пряжа без какой-либо отделки серожелтого цвета.

Текстильная лента (ровница) — совокупность продольно ориентированных штапельных волокон заданной линейной плотности без крутки, предназначенная для последующей механической обработки (вытягивание, скручивание).

Текстильная мононить (монофиламентная нить) — элементарная нить, используемая для непосредственного изготовления текстильных изделий.

Текстильная нить — текстильный продукт неограниченной длины и относительно малого поперечного сечения, состоящий из текстильных волокон и/или элементарных нитей, с круткой и без крутки.

Текстильное волокно — тонкое, гибкое, протяженное тело ограниченной длины, пригодное для изготовления пряжи и нитей.

Текстурированная нить — извитая текстильная нить, структура которой путем дополнительных обработок имеет повышенный удельный объем и растяжимость.

Термофиксированная нить (волокно) — текстильная нить (волокно), подвергнутая тепловой или термовлажностной обработке с целью приведения ее структуры в равновесное состояние.

Тонкорунная шерсть — однородная шерсть, состоящая только из волокон пуха, толщиной до 25 мкм, с мелкой равномерной извитостью, мягкая, эластичная, одинаковой длины. Ее получают от тонкорунных овец (мериносы, цигайские), используют для высококачественных тканей и трикотажных изделий.

Триацетатное волокно — получают из растворов триацетилцеллюлозы в смеси метиленхлорида и спирта сухим способом.

Трощеная нить — текстильная нить, состоящая из двух или более нитей, соединенных без скручивания.

Фасонная нить — текстильная нить, имеющая периодически повторяющиеся местные изменения структуры в виде узелков, петель и окраски.

Фибриллированная пленочная нить — пленочная текстильная нить с продольными рассечениями, имеющая поперечные связи между фибриллами. Фибриллы в данном случае являются элементами структуры, с тониной того же порядка, что и у текстильных волокон.

Химическое волокно (нить) — текстильное волокно (нить), полученное в результате производственного процесса из искусственных, синтетических полимеров или неорганических веществ.

Хлопок — волокна с поверхности семян хлопчатника — однолетнего кустарника, произрастающего в теплом климате. Различают хлопок длинноволокнистый (34-50 мм), средневолокнистый (24-35 мм) и коротковолокнистый (до 27 мм).

Хлопок-сырец — сырье хлопкоочистительных предприятий, содержит большое количество семян хлопка, покрытых хлопковым волокном, с примесями листьев, частей коробочек и др.

Шелковая пряжа — изготавливается из отходов натурального шелка (сдира бракованных коконов), которые очищаются от примесей, отвариваются и расщепляются на отдельные волокна (до 7 текс).

Шелк-основа — нить двойной крутки из 2-4 нитей шелка-сырца. Сначала нити шелка-сырца закручиваются влево на 400-600 кр/м, а затем 2-3 такие нити тростят и скручивают вправо на 480-600 кр/м. При вторичной обратной крутке первичная крутка несколько уменьшается, вследствие чего получается мягкая крученая нить.

Шелк-сырец — продукт разматывания коконов на специальных кокономотальных автоматах, где несколько (4-9) нитей, сложенных вместе, наматываются на мотовило.

Шелк-уток — нить пологой крутки, полученная скручиванием 2-5 и более нитей шелка-сырца пологой крутки (125 кручений на 1 м). Нить мягкая, ровная, гладкая, толщиной 9,1-7,1 текс.

Шерсть — волокна волосяного покрова различных животных: овец, коз, верблюдов и др.

Штапельное волокно — элементарное волокно ограниченной длины, которое получают путем резки жгута из химических волокон.

Штапельное волокно в массе — беспорядочная масса элементарных волокон ограниченной длины.

Эластик — (от греч. Elastos — гибкий, тягучий) высокорастяжимые текстурированные нити, обладающие большой (до 40%) растяжимостью, спиралеобразной извитостью и пушистостью. Получают на машинах “ложного кручения” путем придания нити крутки 2500-3000 кр/м и последующего снятия образовавшихся внутренних напряжений в термокамере (150-180 °С). В результате этого нить принимает форму спирали. Эластик используется для изготовления чулочно-носочных изделий.

Элементарная нить (филамент) — единичная текстильная нить практически неограниченной длины, рассматриваемая как бесконечная.

Элементарное волокно — текстильное волокно, представляющее собой единичный, неделимый элемент.

Натуральные волокна в зависимости от химического состава подразделяются на два подкласса: органические (растительного и животного происхождения) и м инеральные в олокна растительного происхождения: хлопок, лен, пенька, джут, кенаф, кендырь, рами, канатник, сизаль и др.

Волокна животного происхождения: шерсть овец, коз, верблюдов и других животных, натуральный шелк тутового и дубового шелкопряда.

К минеральным волокнам относится асбест,

Химические волокна делятся на два подкласса: искусственные и синтетические.

Искусственные волокна делятся на органические (вискозное волокно, ацетатное, триацетатное, медно-аммиачное, мти-лон В, сиблоновое, полинозное и др.) и неорганические (стеклянные и металлические волокна и нити).

Синтетические волокна в зависимости от природы исходных материалов делятся на полиамидные (капрон, анид, энант), полиэфирные (лавсан), полиакрилнитрильные (нитрон), полиоле-финовые (полипропилен, полиэтилен), полиуретановые (спан-декс), поливинилспиртовые (винол), поливинилхлоридные (хлорин), фторсодержащие (фторлон), а также полиформальдегид -ные, полибутилентерефталатные и др.

Искусственные волокна

Вискозное волокно — самое натуральное из всех химических волокон, получаемое из природной целлюлозы. В зави-симости от назначения вискозные волокна производят в виде нитей, а также штапельного (короткого) волокна с блестящей или матовой поверхностью. Волокно обладает хорошей гигроскопичностью (35-40%), светостойкостью и мягкостью. Недостатками вискозных волокон являются: большая потеря прочности в мокром состоянии, легкая сминаемость, недостаточная устойчивость к трению и значительная усадка при увлажнении. Эти недостатки устранены в модифицированных вискозных волокнах (полинозное, сиблон, мтилон), которым свойственны значительно более высокая прочность в сухом и мокром состоянии, большая износоустойчивость, меньшая усадка и повышенная несминаемость.

Сиблон, по сравнению с обычным вискозным волокном, имеет меньшую степень усадки, повышенные показатели несминаемости, прочности в мокром состоянии и устойчивости к щелочам. Мтилан обладает антимикробными свойствами и используется в медицине в качестве нитей для временного скрепления хирургических швов. Вискозные волокна применяются при производстве одежных тканей, бельевого и верхнего трикотажа как в чистом виде, так и в смеси с другими волокнами и нитями.

Ацетатные и триацетатные волокна получают из хлопковой целлюлозы. Ткани из ацетатных волокон внешне очень похожи на натуральный шелк, обладают высокой упругостью, мягкостью, хорошей драпируемостью, малой сминаемостью, способностью пропускать ультрафиолетовые лучи. Гигроскопичность меньше, чем у вискозы, поэтому электризуются. Ткани из триацетатного волокна имеют малую сминаемость и усадку, но теряют прочность в мокром состоянии. Благодаря высокой упругости ткани хорошо сохраняют форму и отделки (гофре и плиссе). Высокая термоустойчивость позволяет гладить ткани из ацетатных и триацетатных волокон при 150-160°С.

В результате каждый день их используют миллиарды людей . И, в самом деле, любой из нас стремится предстать перед окружающими в наиболее привлекательном виде за счет использования наиболее привлекательной одежды, которую создают из самых лучших волокон, какие только существуют . Многим из нас требуется биоразлагаемый шовный материал в случае хирургического вмешательства. Мы все живем в домах, в которых необходимы волокна для воздушных и водяных фильтров . Удобная в обращении обтирочная салфетка из волокна помогает легко производить уборку на нашей кухне. И, действительно, широкий диапазон волокон позволяет создавать бесконечной количество применений.

Мы используем натуральные и синтетические волокна. Натуральные волокна использовались с незапамятных времен . Недавно на рынок были представлены новые бамбуковые волокна 1 , которые начинают широко использоваться . Эти волокна демонстрируют противомикробные свойства, и их можно использовать для создания многих текстильных применений, а также «зеленых» композитов. Хлопок, шелк, шерсть или лен (возможно, древнейшее волокно в мире) используются во всех сферах нашей повседневной жизни.

Интересно, что известные волокна являются полимерами. Большинство из них представляет собой просто линейные макромолекулы. Следует отдать должное д-ру Штаудингеру, лауреату Нобелевской премии, который был первым, кто отметил, что полимеры представляют собой линейные ковалентно связанные молекулы и не являются агрегатами, как считалось ранее. Он заложил основы химии синтетических органических полимеров и волокон . Вскоре после этого открытия пионерские работы д-ра Каротерса из компании Du Pont и д-ра Шлака из компании BASF представили нам полимерные волокна найлона 6,6 и найлона 6 соответственно. Позднее, в 1946 г. Винфилдом и Диксоном была разработана технология производства полиэтилен терефталата (PET ), и на рынке появились полиэфирные штапельные волокна. Найлоны и PET являются основными полимерными волокнами. На протяжении ряда лет было разработано множество других полимеров, и каждый день синтезируется множество новых макромолекул . В последние годы наблюдались значительные достижения в области разработки новых полимеров и полимерных волокон. Существенные достижения были достигнуты в области производства высокоэффективных волокон, эластичных волокон и нановолокон, произведенных из биополимеров за счет использования технологии электропрядения, а также высокоэффективных полиэфирных волокон. В результате, в этом номере Polymer Reviews мы ставим своей задачей информирование читателя о современном положении дел и обзорное рассмотрение этих новых достижений.

Высокоэффективные волокна

В последнее время большие усилия сосредотачиваются на производстве полимеров со сверхвысоким модулем. Ковалентные связи, присутствующие в этих полимерах, отвечают за их прочность . Тем не менее, синтетические полимеры обычно не демонстрируют соответствующего потенциального высокого модуля. Высокий модуль и прочность могут быть результатом структурного совершенства, такого как прямые, прекрасно выстроенные, стабильные и плотно упакованные цепи. Обычно присутствует сочетание расширенных цепей и высокой кристаллической ориентации .

Хорошо известно, что самые высокие значения модуля упругости, о которых сообщается для линейных полимеров, обычно намного меньше расчетных теоретических значений . Накамае и его коллеги 3 измерили "теоретический" модуль упругости , который был определен на основе наблюдения за зависящей от напряжения рентгеновской дифракцией в направлении полимерной цепи. Такое теоретическое значение модуля упругости сопоставляллось с окончательным модулем полимера. Большинство полимеров демонстрируют модули упругости при растяжении значительно ниже тех значений, которые имеются у их кристаллических решеток в направлении цепи . Только у ультра вытянутого полиэтилена с высокой молекулярной массой (UHMW PE ), изотактического полипропилена и кевлара модули, близкие к теоретическим значениям . Полиамидные волокна смогли достигать максимально только 1/20 своего теоретического значения.

В случае с полимерами с гибкой основной цепью, прочная и жесткая полимерная структура может быть получена за счет преобразования высоко ориентированных и расширенных конформаций цепей . В результате были получены значительно более высокие свойства упругости на разрыв, аналогичные свойствам ультра вытянутого полиэтилена с высокой молекулярной массой . Высокий модуль полиэтилена был получен за счет прядения из раствора (прядения геля) со сверх высокой степенью вытяжки. Закариадис и его коллектив успешно осуществляли вытяжку полиэтилена со сверхвысоким молекулярным весом более 200 раз и получили почти теоретическое значение модуля при такой степени вытяжки. Кристаллическая морфология полиэтилена со сверхвысокой молекулярной массой, получаемого из раствора (UHMWPE ), была деформирована втонковолокнистые структуры при значениях степени вытяжки, превышающих 200. Такая высокая степень вытяжки образуется за счет меньшего числа переплетений цепи и между- и межпластиновных связующих молекул в такой более упорядоченной морфологии кристаллов со сложными цепями и повторным входом . Высокоэффективные полиэтиленовые волокна в настоящее время производятся в промышленном масштабе с использованием метода гелепрядения компанией DSM High Performance Fibers из Нидерландов, совместным предприятием Toyobo / DSM в Японии, а также компанией Honeywell (ранее Allied Signal или Allied Fibers ) из США. Прочность Spectra 1000 достигает значения модуля Юнга 124 ГПа и прочности на разрыв 3.51 ГПа. По сообщению Афшари и Ли, была проведена большая работа для повышения термической стабильности этих волокон.

Компания Du Pont de Nemours в настоящее время разрабатывает товарные волокна и пряжи из M 5. Очень интересный мономер , 2,5-дигидрокситерефталевая кислота, используется для производства поли-2,6-диимидозопиридинилен-1,4-(2,5-дигидрокси)фенилена (PIPD ). Уникальной чертой этих полимеров является то, что две гидроксильные группы (на терефталевой кислоте) могут образовывать межмолекулярные связи и, следовательно, фибриллирование, которое часто является проблемой для арамидных волокон, здесь практически исключается . В результате, у волокон M 5 самый высокий предел прочности при сжатии среди всех синтетических волокон, Исследовательская оценка ультрафиолетовой стабильности М5 показала наличие превосходных эксплуатационных характеристик в этой области. Механические свойства этого нового волокна делают его конкурентоспособным по отношению к углеволокну при изготовлении многих применений, имеющих легкие, тонкие, выдерживающие нагрузку, жесткие, современные композитные компоненты и структуры . Огромные усилия были предприняты для разработки сверхпрочного кевлара, и, в последнее время, волокон PBO . Не так давно компания DuPont de Nemours объявила о планах расширения производства кевларовых полимеров на своем предприятии в Спруансе на 25% к 2010 г. для того, чтобы быть в состоянии удовлетворить растущий спрос. Благодаря своей высокой прочности на разрыв,высокому рассеянию энергии, низкой плотности и снижению веса, а также удобству кевлар используется при производстве пуленепробиваемых жилетов, шлемов, средств защиты собственности , панелей, средств защиты автомобилей и стратегического защитного экранирования для защиты человеческой жизни.

Волокна PBO были запущены в промышленное производство компанией Toyobo Co . в 1998 г. под торговым названием Zylon после почти 20 лет исследований в Соединенных Штатах и Японии . Волокна РВО обладают выдающими свойствами в области модуля упругости при растяжении (352 ГПа) и прочности на разрыв (5.6 ГПа) по сравнению с другими имеющимися на рынке высокоэффективными волокнами. Их удельная прочность и удельный модуль в 9 и 9.4 раз выше чем у стали . 6,7 К сожалению для PBO , высоким эксплуатационным характеристикам сопутствуют и существенные проблемы. Хорошо известна плохая устойчивость РВО к воздействию ультрафиолетовых лучей и видимого излучения. У РВО также отсутствует осевая прочность при сжатии . Прочность волокна РВО на разрыв также снижается в высокотемпературных и влажных средах . Немалые усилия были приложены для того, чтобы осуществить химическое изменение волокна РВО для повышения осевой прочности при сжатии .

И волокно кевлар, и волокно РВО рассмотрены Афшари и его коллегами в этой статье. Прочие высокоэффективные продукты, такие как волокна Vectran или PVA (Kurray ) здесь рассматриваться не будут. Мы надеемся собрать данные для другой работы о специальных синтетических волокнах в ближайшем будущем .

Эластичные волокна

Обзор эластичных волокон в данной статье представлен работой профессора Ху и его коллег из Гонконгского Политехнического университета .

Целый ряд компаний производит множество эластичных волокон, которые обладают эластичностью и способностью к восстановлению . Их можно получать с помощью прядения полимеров со специальной молекулярной структурой или модифицированных полимеров. В том, что касается упругого удлинения, эластичные волокна можно классифицировать как высокоэластичные волокна (удлинение 400-800%), среднеэластичные волокна (150-390%), низкоэластичные волокна (20-150%), и микроэластичные волокна с упругим удлинением менее 20%.

Традиционные эластичные волокна, такие как спандекс или лайкра, это хорошо известные сегментированные полиуретановые волокна, которые производятся промышленно с использованием технологии сухого прядения. Тем не менее, были разработаны многие новые эластичные продукты, включая высоко гигроскопичный и высвобождающий влагу спандекс (компания AsahiKasei ) или очень мягкий спандекс. И это лишь несколько примеров.

Еще одним интересным продуктом, который может термоотверждаться с волокнами РЕТ, является легко отверждаемый спандекс. У полиэфирного спандекса плохая термическая стабильность, поэтому его нельзя переплетать с полиэфирным волокном . В компании Asahi Kasei разработали низкотемпературный отверждаемый спандекс, который называется Roica BX , и обладает не только хорошим отверждением, но также может переплетаться с полиэфирным волокном и отверждаться при высокой температуре .

Еще одной инновацией является волокно со скрытой извитостью. В компании Du Pont de Nemours (Уилмингтон, Делавэр ) приступили к изучению первой пряжи со скрытой извитостью (из полипропилена) еще в начале шестидесятых годов. Недавно на рынке приобрели популярность новые запущенные в промышленное производство продукты со скрытой извитостью компании Du Pont , полиэфир T -400 и найлон T -800. Компания Unitica (Хиого, Япония) также запустила в промышленное производство пряжи со скрытой извитостью, Z -10 и S -10. Кроме того, двухкомпонентное волокно из найлона и полиуретана под названием Sideria , разработанное компанией Kanebo (Япония), позволяет приспособить до нужной степени термическую обработку к самой скрытой извитости.

XLAT M представляет собой растягивающееся волокно на полиолефиновой основе, которое обладает природной устойчивостью к воздействию агрессивных химических веществ, высокой теплоты и ультрафиолетовых лучей, и обеспечивает преимущества в области эксплуатационных характеристик, сопоставимые с преимуществами существующих эластичных волокон . Эта очень новая и интересная технология разработана компанией Dow Chemical , и представлена здесь Кейси, нашим постоянным автором .

Включение волокна XLA в ткани раскрывает несравненные возможности для разработки удобной в обращении и износостойкой одежды с улучшенной способностью сохранять форму. В США мы видим волокно Lastol , это новое родовое название для данного эластичного волокна на основе полиолефина . 10 " 13 В специальной микроструктуре XLA сочетаются длинные и эластичные цепи с кристаллическими и ковалентными связями или перекрестными связями с формированием сложной сети . За счет использования собственной технологии Dow по сшиванию с помощью электронного луча осуществляется управление длиной цепи, и количеством кристаллитов для придания волокну XLA уникального эластичного профиля . Высокое растяжение достигается при низких уровнях усилия, что позволяет одежде без труда растягиваться и сгибаться, сохраняя при этом свою изначальную форму .

Другой технологией будущего являются волокна с запоминанием формы. Как отмечает профессор Ху: "Задачей на будущее является исследование двухсторонних многофункциональных и имеющих много стимулов полимеров с бионическим запоминанием формы, которые можно будет активировать с помощью тепла, влажности, химических веществ, магнетизма и электричества или с помощью оптического стимула, и которые будут иметь функции устойчивости к воздействию ультрафиолетового излучения, а также противобактериальные, антистатические и препятствующие образованию плесени; а также создание системной, обобщенной и интегрированной теории полимеров с запоминанием формы наряду с применением таких полимеров с запоминанием формы при производстве текстиля". Не далек тот день, когда все эти идеи будут воплощены в жизнь в наших лабораториях и на наших промышленных предприятиях .

Волокнистые материалы, изготовленные электропрядением

С помощью традиционных технологий прядения волокна, таких как мокрое прядение, сухое прядение, прядение из расплава и гелепрядение можно производить полимерные волокна с диаметрами до значений микрометрового диапазона . При уменьшения диаметра волокна с микрометров до нанометров можно получить очень большое отношение площади поверхности к объему. Эти уникальные свойства делают полимерные нановолокна идеальными кандидатами для использования во многих важных применениях . Полимерные волокна могут генерироваться из электростатически стимулируемой струи полимерного раствора или полимерного расплава (Рис. 1). Эта технология, известная как технология электропрядения, привлекала большое внимание в предыдущем десятилетии благодарятому, что она обеспечивала возможность повторяемого производств полимерного волокна с диаметром в диапазоне от 50 до 500 нм. 15 " 19 Благодаря небольшим размерам ячеек и большой площади поверхности, которые изначально присущи текстильным, материалам, изготовленным электропрядением, эти ткани являются многообещающими для производства защитной одежды для солдат (они позволят максимально повысить выживаемость, возобновляемость и боевую эффективность индивидуальных систем солдатской одежды для борьбы с экстремальными погодными условиями , и в условиях баллистической, ядерной, биологической и химической войны ).

Время чтения: 4 минуты

Некоторые натуральные целлюлозные волокна обрабатываются и перерабатываются для конкретных целей. Известные волокна, такие как вискоза, ацетат и т. д., получают путем переработки различных природных полимеров.

Первые искусственные волокна, которые были разработаны и изготовлены, использовали полимеры природного происхождения, точнее целлюлозу, которая является сырьем, доступным в больших количествах в растительном мире.

Целлюлоза — это натуральный полимер, который составляет живые клетки всей растительности. Это материал в центре углеродного цикла, а также самый распространенный и возобновляемый биополимер на планете.

Хлопчатобумажные листы и древесная масса, вискоза, медноаммиачный шелк, целлюлозный ацетат (вторичный и триацетат), полиноза, волокно с высоким модулем во влажном состоянии (ВВМ).

  • Целлюлоза является одним из многих полимеров, найденных в природе.
  • Дерево, бумага и хлопок содержат целлюлозу. Целлюлоза — отличное волокно.
  • Целлюлоза состоит из повторяющихся звеньев мономерной глюкозы.
  • Три типа регенерированных целлюлозных волокон представляют собой вискозу, ацетат и триацетат, которые получены из клеточных стенок коротких хлопковых волокон, называемых линтами.
  • Бумага, например, представляет собой почти чистую целлюлозу

Вискоза

Первоначально слово «вискоза» применялось к любому волокну, изготовленному на основе целлюлозы и, следовательно, содержало целлюлозные ацетатные волокна. Тем не менее, определение вискозы было описано в 1951 году и теперь включает в себя текстильные волокна и волокна, состоящие из регенерированной целлюлозы, за исключением ацетата.

  • Вискоза представляет собой регенерированное целлюлозное волокно.
  • Это первое изготовленное человеком волокно.
  • Она имеет зазубренную круглую форму с гладкой поверхностью.
  • При намокании вискоза теряет 30-50% своей силы.
  • Вискоза образуется из естественных полимеров, и поэтому является не синтетическим волокном, а искусственным регенерированным целлюлозным волокном.
  • Волокно продается как искусственный шелк.
  • Существует две основных разновидности вискозного волокна, а именно вискозное и медноаммиачное.

Ацетат

Производное волокно, в котором волокнообразующим веществом является ацетат целлюлозы. Ацетат получают из целлюлозы путем реакции очищения целлюлозы из древесной целлюлозы с уксусной кислотой и уксусным ангидридом в присутствии серной кислоты.

Характеристики ацетатного волокна:

  • Роскошное на ощупь и внешний вид
  • Широкий спектр цветов и блесков
  • Отличная драпируемость и мягкость
  • Относительно быстрое высыхание
  • Устойчивость к усадке, моли и мучнистой росе

Для ацетата разработаны специальные красители, так как он не принимает красители, обычно используемые для хлопка и вискозы.

Ацетатные волокна представляют собой изготовленные волокна, в которых волокнообразующим веществом является ацетат целлюлозы. Эфиры целлюлозы триацетат и ацетат образуются путем ацетилирования хлопковых линтов или древесной целлюлозы с использованием уксусного ангидрида и кислотного катализатора в уксусной кислоте.

Ацетатные и триацетатные волокна очень похожи по внешнему виду на вискозу с постоянной прочностью. Элементы и триацетаты представляют собой умеренно жесткие волокна и обладают хорошей эластичностью при изгибе и деформации, особенно после термообработки.

Устойчивость к абразивному износу ацетата и триацетата невелика, и эти волокна не могут использоваться в применениях, требующих высокой стойкости к истиранию и носке; однако устойчивость этих волокон к трению превосходна. Хотя ацетат и триацетат являются умеренно абсорбирующими, их абсорбция не может сравниться с чистыми целлюлозными волокнами. На ощупь ацетатные ткани несколько более мягкие и более гибкие, чем триацетат. Ткани обоих волокон обладают отличными характеристиками драпировки. Ткани ацетата и триацетата имеют приятный внешний вид и высокую степень блеска, но блеск этих тканей можно модифицировать путем добавления матирующего средства.

Как ацетат, так и триацетат восприимчив к атакам ряда бытовых химикатов. Ацетат и триацетат подвергаются воздействию сильных кислот и оснований и окисляющих отбеливателей. Ацетат обладает только небольшой устойчивостью к солнечному свету, тогда как солнечная устойчивость триацетата выше. Оба волокна имеют хорошую термостойкость ниже их точек плавления.

Ацетат и триацетат не могут быть окрашены красителями, используемыми для целлюлозных волокон. Эти волокна могут быть удовлетворительно окрашены дисперсными красителями при умеренных и высоких температурах, что дает четкие, яркие оттенки. Ацетат и триацетат быстро высушиваются, и их можно подвергать сухой чистке.