Конспект урока "Строение атома углерода. Валентные состояния атома углерода". Углерод — характеристика элемента и химические свойства

УГЛЕРОД, С (а. carbon; н. Kohlenstoff; ф. carbone; и. carbono), — химический элемент IV группы периодической системы Менделеева , атомный номер 6, атомная масса 12,041. Природный углерод состоит из смеси 2 стабильных изотопов: 12 С (98,892%) и 13 С (1,108%). Известно также 6 радиоактивных изотопов углерода, из которых наиболее важным является изотоп 14 С с периодом полураспада 5,73.10 3 лет (этот изотоп в небольших количествах постоянно образуется в верхних слоях атмосферы в результате облучения ядер 14 N нейтронами космического излучения).

Углерод известен с глубокой древности. Древесный использовался для восстановления металлов из руд , а алмаз — как . Признание углерода в качестве химического элемента связано с именем французского химика А. Лавуазье (1789).

Модификации и свойства углерода

Известны 4 кристаллические модификации углерода: графит , алмаз, карбин и лонсдейлит, сильно различающиеся по своим свойствам. Карбин — искусственно полученная разновидность углерода, представляющая собой мелкокристаллический порошок чёрного цвета, кристаллическая структура которого характеризуется наличием длинных цепочек атомов углерода, расположенных параллельно друг другу. Плотность 3230-3300 кг/м 3 , теплоёмкость 11,52 Дж/моль.К. Лонсдейлит обнаружен в метеоритах и получен искусственно; его структура и физические свойства окончательно не установлены. Для углерода характерно также состояние с неупорядоченной структурой — т.н. аморфный углерод (сажа, кокс , древесный уголь). Физические свойства "аморфного" углерода в сильной степени зависят от дисперсности частиц и от наличия примесей.

Химические свойства углерода

В соединениях углерод имеет степени окисления +4 (наиболее распространённая), +2 и +3. При обычных условиях углерод химически инертен, при высоких температурах соединяется со многими элементами, проявляя сильные восстановительные свойства. Химическая активность углерода убывает в ряду "аморфный" углерод, графит, алмаз; взаимодействие с кислородом воздуха у этих разновидностей углерода происходит соответственно при температурах 300-500°С, 600-700°С и 850-1000°С с образованием диоксида (CO 2) и монооксида (CO) углерода. Диоксид растворяется в воде с образованием угольной кислоты. Все формы углерода устойчивы к щелочам и кислотам. С галогенами углерод практически не взаимодействует (кроме графита, который с F 2 выше 900°С реагирует), поэтому его галогениды получают косвенным путём. Среди азотсодержащих соединений важное практическое значение имеют цианистый водород HCN (синильная кислота) и его многочисленные производные. При температурах выше 1000°С углерод взаимодействует со многими металлами, образуя карбиды. Все формы углерода нерастворимы в обычных неорганических и органических растворителях.

Важнейшее свойство углерода — способность его атомов образовывать прочные химические связи между собой, а также между собой и другими элементами. Способность углерода образовывать 4 равнозначные валентные связи с другими атомами углерода позволяет строить углеродные скелеты разных типов (линейные, разветвлённые, циклические); именно этими свойствами и объясняется исключительная роль углерода в строении всех органических соединений и, в частности, всех живых организмов.

Углерод в природе

Среднее содержание углерода в земной коре 2,3.10 % (по массе); при этом основная масса углерода концентрируется в осадочных горных породах (1%), тогда как в других горных породах существенно более низкие и примерно одинаковые (1-3.10%) концентрации этого элемента. Углерод накапливается в верхней части , где его присутствие связано в основном с живым веществом (18%), древесиной (50%), каменным углём (80%), нефтью (85%), антрацитом (96%), а также с доломитами и известняками . Известно свыше 100 минералов углерода, из которых наиболее распространены карбонаты кальция , магния и железа (кальцит CaCO 3 , доломит (Ca, Mg)CO 3 и сидерит FeCO 3). С накоплением углерода в земной коре часто связано и накопление других элементов, сорбируемых органическим веществом и осаждающихся после его захоронения на дне водоёмов в виде нерастворимых соединений. Большие количества диоксида CO 2 выделяются в атмосферу из Земли при вулканической деятельности и при сжигании органических топлив. Из атмосферы CO 2 усваивается растениями в процессе фотосинтеза и растворяется в морской воде , слагая тем самым важнейшие звенья общего круговорота углерода на Земле. Важную роль играет углерод и в космосе; на Солнце углерод занимает 4-е место по распространённости после водорода, гелия и кислорода, участвуя в ядерных процессах.

Применение и использование

Важнейшее народно-хозяйственное значение углерода определяется тем, что около 90% всех первичных источников энергии, потребляемой человеком, приходится на органическое топливо. Наблюдается тенденция использовать нефть и не как топливо, а как сырьё для разнообразных химических производств. Меньшую, но тем не менее весьма существенную роль в народном хозяйстве играет углерод, добываемый в виде карбонатов (металлургия, строительство, химические производства), алмазов (ювелирные украшения, техника) и графита (ядерная техника, жаропрочные тигли, карандаши, некоторые виды смазок и т.д.). По удельной активности изотопа 14 С в остатках биогенного происхождения определяют их возраст (радиоуглеродный метод датирования). 14 С широко используется в качестве радиоактивного индикатора. Важное значение имеет наиболее распространённый изотоп 12 С — одна двенадцатая часть массы атома этого изотопа принята за единицу атомной массы химических элементов.

Его называют основой жизни. Он есть во всех органических соединениях. Только он способен формировать молекулы из миллионов атомов, такие, как ДНК.

Узнали героя ? Это углерод . Число его соединений, известных науке, приближается к 10 000 000.

Столько не наберется у всех остальных, вместе взятых элементов. Не удивительно, что один из двух разделов химии изучает исключительно соединения углерода и проходится в старших классах.

Предлагаем вспомнить школьную программу, а так же, дополнить ее новыми фактами.

Что такое углерод

Во-первых, элемент углерод – составная . В ее новом стандарте, вещество располагается в 14-ой группе.

В устаревшем варианте системы, углерод стоит в главной подгруппе 4-ой группы.

Обозначение элемента – буква С. Порядковый номер вещества – 6, относится к группе неметаллов.

Органический углерод соседствует в природе с минеральным. Так, , и камень фуллерен – 6-ой элемент в чистом виде.

Различия во внешности обусловлены несколькими типами строения кристаллической решетки. От нее зависят и полярные характеристики минерального углерода.

Графит, к примеру, мягок, не зря же добавляется в пишущие карандаши, а всех остальных на Земле. Поэтому, логично рассмотреть свойства самого углерода, а не его модификаций.

Свойства углерода

Начнем со свойств, общих для всех неметаллов. Они электроотрицательны, то есть, оттягивают на себя общие электронные пары, образованные с другими элементами.

Получается, углерод может восстановить оксиды неметаллов до состояния металлов.

Однако, делает это 6-ой элемент лишь при нагреве. В обычных условиях вещество химически инертно.

На внешних электронных уровнях неметаллов больше электронов, чем у металлов.

Именно поэтому, атомы 6-го элемента стремятся достроить толику собственных орбиталей, чем отдавать свои частицы кому-то.

Металлам же, с минимумом электронов на внешних оболочках проще отдать отдаленные частицы, чем перетягивать на себя чужие.

Главная форма 6-го вещества – атом. По идее, речь должна идти о молекуле углерода . Из молекул составлено большинство неметаллов.

Однако, углерод с и – исключения, имеют атомную структуру. Именно за счет нее соединения элементов отличаются высокими температурами плавления.

Еще одно отличительное свойство многих форм углерода – . У того же она максимальна, равна 10-ти баллам по .

Раз разговор зашел о формах 6-го вещества, укажем, что кристаллическая – лишь одна из.

Атомы углерода не всегда выстраиваются в кристаллическую решетку. Встречается аморфная разновидность.

Примеры таковой: — древесный , кокс, стеклоуглерод. Это соединения, но не имеющие упорядоченной структуры.

Если же вещество соединено с другими, могут получиться и газы. Кристаллический углерод переходит в них при температуре в 3700 градусов.

В обычных условиях элемент газообразен, если это, к примеру, оксид углерода .

В народе его именуют угарным газом. Однако, реакция его образования активнее и быстрее, если, все же, поддать жару.

Газообразных соединений углерода с кислородом несколько. Есть еще, к примеру, монооксид.

Этот газ бесцветный и ядовитый, причем, при обычных условиях. Такая окись углерода имеет тройную связь в молекуле.

Но, вернемся к чистому элементу. Будучи довольно инертным в химическом плане, он, все же, может взаимодействовать не только с металлами, но и их оксидами, , и как видно из разговора про газы, с кислородом.

Реакция возможна и с водородом. Углерод вступит во взаимодействие, если «сыграет» один из факторов, или все вместе: температура, аллотропное состояние, дисперсность.

Под последней, подразумевается отношение площади поверхности частиц вещества к занимаемому ими объему.

Аллотропия – возможность нескольких форм одного и того же вещества, то есть, имеется в виду кристаллический, аморфный, или газообразный углерод .

Однако, как не совпадай факторы, с кислотами и щелочами элемент не реагирует вовсе. Игнорирует углерод и почти все галогены.

Чаще всего, 6-ое вещество связывается само с собой, образовывая те самые масштабные молекулы из сотен и миллионов атомов.

Сформированные молекулы, углерода реагируют с еще меньшим числом элементов и соединений.

Применение углерода

Применение элемента и его производных столь же обширно, как их число. Содержание углерода в жизни человека больше, чем может казаться.

Активированный уголь из аптеки – 6-е вещество. в из – он же.

Графит в карандашах – тоже углерод, нужный, так же, в ядерных реакторах и контактах электрических машин.

Метановое топливо тоже в списке. Диоксид углерода нужен для производства и может быть сухим льдом, то есть, хладагентом.

Углекислый газ служит консервантом, заполняя овощные хранилища, а еще, нужен для получения карбонатов.

Последние, используют в строительстве, к примеру, . А карбонат пригождается в мыловарении и стекольном производстве.

Формула углерода соответствует еще и коксу. Он пригождается металлургам.

Кокс служит восстановителем во время переплавки руды, извлечения из нее металлов.

Даже обычная сажа – углерод, используемый в качестве удобрения и наполнителя .

Не задумывались, почему автомобильные шины цвета? Это сажа. Она придает резине прочность.

Сажа, так же, входит в крема для обуви, краски для печати, туши для ресниц. Народное название употребляется не всегда. Промышленники зовут сажу техническим углеродом .

Масса углерода начинает использоваться в сфере нанотехнологий. Сделаны сверхмалые транзисторы, а еще трубки, которые в 6-7 раз прочнее .

Вот вам и неметалл. К наноизысканиям, кстати, подключились ученые из . Из углеродных трубок и графена они создали аэрогель.

Это и прочный материал. Звучит увесисто. Но, на самом деле, аэрогель легче воздуха.

В железо углерод добавляют, чтобы получить так называемую углеродистую сталь. Она тверже обычной.

Однако, массовая доля 6-го элемента в не должна превышать пары, тройки процентов. Иначе, свойства стали идут на спад.

Список можно продолжать бесконечно. Но, где бесконечно брать углерод? Добывают его или синтезируют? На эти вопросы ответим в отдельной главе.

Добыча углерода

Двуокись углерода , метан, отдельно углерод, можно получать химическим путем, то есть, намеренным синтезом. Однако, это не выгодно.

Газ углерод и его твердые модификации проще и дешевле добывать попутно с каменным углем.

Из земных недр этого ископаемого извлекают примерно 2 миллиарда тонн ежегодно. Хватает, чтобы обеспечить мир техническим углеродом.

Что касается , их извлекают из кимбирлитовых трубок. Это вертикальные геологические тела, сцементированные лавой осколки породы.

Именно в таких встречаются . Поэтому, ученые предполагают, что минерал формируется на глубинах в тысячи километров, там же, где и магма.

Месторождения графита, напротив, горизонтальны, располагаются у поверхности.

Поэтому, добыча минерала довольно проста и не затратна. В год из недр извлекают около 500 000 тонн графита.

Чтобы получить активированный уголь, приходится нагреть каменный уголь и обработать струей водяного пара.

Ученые даже разобрались, как воссоздать белки человеческого тела. Их основа – тоже углерод. Азот и водород – аминогруппа, к нему примыкающая.

Нужен, так же, кислород. То есть, белки построены на аминокислоте. Она не у всех на слуху, но для жизни куда важнее остальных.

Популярные серная, азотная, соляная кислоты, к примеру, организму нужны куда меньше.

Так что, углерод – то, за что стоит платить. Узнаем, на сколько велик разброс цен на разные товары из 6-го элемента.

Цена углерода

Для жизни, как несложно понять, углерод бесценен. Что же касается остальных сфер бытия, ценник зависит от наименования продукции и ее качества.

За , к примеру, платят больше, если не содержат сторонних включений.

Образцы аэрогеля, пока, стоят десятки долларов за несколько квадратных сантиметров.

Но, в будущем, производители обещают поставлять материал рулонами и просить недорого.

Технический углерод, то есть, сажа, реализуется по 5-7 рублей за кило. За тонну, соответственно, отдают около 5000-7000 рублей.

Однако, углеродный налог, вводимый в большинстве развитых стран, может обеспечить рост цен.

Углеродную промышленность считают причиной парникового эффекта. Предприятия обязывают платить за выбросы, в частности, CO 2 .

Это главный парниковый газ и, одновременно, индикатор загрязнения атмосферы. Эта информация – ложка дегтя в бочке меда.

Она позволяет понять, что у углерода, как и всего в мире, есть обратная сторона, а не только плюсы.



В этой книге слово «углерод» встречается довольно часто: в рассказах о зелёном листе и о железе, о пластмассах и кристаллах и ещё во многих других. Углерод - «рождающий уголь» - один из удивительнейших химических элементов. Его история - это история возникновения и развития жизни на Земле, потому что он входит в состав всего живого Земли.

А как выглядит углерод?

Сделаем несколько опытов. Возьмём сахар и нагреем его без доступа воздуха. Он сначала расплавится, станет коричневым, а потом почернеет и превратится в уголь, выделив воду. Если теперь нагреть этот уголь в присутствии , он сгорит без остатка и превратится в . Стало быть, сахар состоял из угля и воды (сахар, кстати, и называют углеводом), а «сахарный» уголь - это, видимо, и есть чистый углерод, потому что углекислый газ - это соединение углерода с кислородом. Значит, углерод - чёрный, мягкий порошок.

Возьмём серый мягкий камень графит, хорошо тебе знакомый благодаря карандашам. Если его нагреть в кислороде, он тоже сгорит без остатка, хотя и немного медленней, чем уголь, а в приборе, где он горел, останется углекислый газ. Значит, графит тоже чистый углерод? Конечно, но и это ещё не всё.

Если в том же приборе в кислороде накалить алмаз, прозрачный сверкающий драгоценный камень, самый твердый из всех минералов, он тоже сгорит, превратившись в углекислый газ. Если же нагревать алмаз без доступа кислорода, он превратится в графит, а при очень высоких давлениях и температурах можно из графита получить алмаз.

Итак, уголь, графит и алмаз - это различные формы существования одного и того же элемента - углерода.

Ещё более удивительна способность углерода «принимать участие» в огромном количестве разнообразных соединений (поэтому-то слово «углерод» так часто встречается в этой книге).

104 элемента периодической системы образуют более сорока тысяч изученных соединений. А соединений, основу которых составляет углерод, уже известно свыше миллиона!

Причина такого разнообразия заключается в том, что атомы углерода могут соединяться между собой и с другими атомами прочной связью, образуя сложные в виде цепей, колец и других фигур. Ни один элемент в таблице , кроме углерода, не способен на это.

Бесконечно число фигур, которые можно построить из атомов углерода, и поэтому бесконечно число возможных его соединений. Это могут быть и очень простые вещества, например светильный газ метан, в молекуле которого четыре атома связаны с одним атомом углерода, и настолько сложные, что строение их молекул ещё не установлено. К таким веществам относится

Общие сведения и методы получения

Углерод (С) -неметалл. Название происходит от слова уголь В при­роде находится как в свободном состоянии, так и в виде многочислен­ных соединений. В качестве продуктов разложения древних формаций существуют угли, главной составной частью которых является углерод.

Нефть, озокерит (горный воск) и асфальт также являются углерод­ными соединениями, которые, очевидно, возникли при разложении древ­них организмов,

Углерод является главной составной частью животного и раститель­ного мира.

Несмотря на большое многообразие твердых конденсированных сис­тем углерода (угли, кокс, сажа, графит, алмаз и др), он имеет две кристаллические модификации: гексагональную (равновесную) в виде графита и кубическую (метастабильную) в виде алмаза. Углерод, по­лученный при термическом разложении его соединений, имеет плотную черную окраску. Ранее черный углерод считали особой аморфной мо­дификаций элемента. Согласно последним данным, тонкая структура атой модификации отвечает графиту.

Графит образует довольно обширные месторождения. Хорошо сфор­мированные кристаллы графита встречаются редко. Графит гибок, мягок, обладает слабым металлическим блеском, отличается маркостью. При­родный графит часто загрязнен другими элементами (до 20 °/о), поэтому для нужд современной техники и прежде всего атомной энергетики ис­пользуют искусственный графит высокой чистоты. Для производства искуственного графита используют в основном нефтяной кокс как на­полнитель и каменноугольный пек как связующее. В качестве добавок к наполнителю применяют природный графит и сажу. Иногда в качест­ве связующего используют некоторые синтетические смолы, например фурановые или фенольные. Производство искусственного графита сос­тоит из ряда механических операций (дробления, размола, рассева кокса по фракциям, смешения кокса со связующими, формовки заготовок) и термических отжигов при разной температуре и длительности. Графити-зация - окончательная термическая обработка, превращающая углерод­ный материал в графит, проводится при 3000-3100°С.

Углерод в форме алмаза представляет собой очень твердые, абсо­лютно прозрачные (в чистом виде) кристаллы, сильно преломляющие свет. Естественные грани алмаза часто являются гранями правильных октаэдров; однако встречаются и другие формы кубической системы среди ннх тетраэдр, что указывает на то, что алмаз принадлежит к тет-раэдрической гемнэдрии кубической системы.

В природе алмазы встречаются главным образом в россыпях, т. е. в наносных породах. В ряде мест алмазы обнаружены в оливинах вулка­нического происхождения, в так называемых кимберлитовых трубках.

В послевоенный период налажено промышленное получение искусст­венных алмазов как необходимого сырья для изготовления различных паст и режущего инструмента.

Физические свойства

Атомные характеристики. Атомный номер углерода 6, атомная масса 12,01115 а.е.м, атомный объем 3,42*10- 6 м 3 /моль. Атомный радиус ко-валентный равен 0,077 нм; ионный радиус С 4 + 0,02 нм. Конфигурация внешних электронных оболочек атома углерода 2л,2 2р 2 . Углерод состоит из двух стабильных изотопов |2 С и |3 С, содержание которых соответст­венно равно 98,892 и 1,108 %. Известны радиоактивные изотопы с мас­совыми числами 10, 11, 14, 15, период полураспада которых соответст­венно составляет 19,1 с, 1224 с, 5567 лет, 2,4 с.

Аллотропические модификации - графит и алмаз. Графит имеет гексагональную кубическую решетку, периоды который при комнатной температуре: а=0,2456 нм, с=0,6696 нм. Алмаз имеет кубическую ре­шетку с периодом а = 0,356679 нм. Потенциалы ионизации атома угле­рода / (эВ): 11,264; 24,376; 47,86. Электроотрицательность 2,5. Работа выхода электронов <р=4,7 эВ. Эффективное поперечное сечение захвата тепловых нейтронов 0,0034*10 -28 м 2 .

Плотность. При комнатной температуре рентгеновская плотность гра­фита 2,666 Мг/м 3 , пикнометрическая плотность 2,253 Мг/м 3 ; при тех же условиях рентгеновская плотность алмаза 3,515 Мг/м 3 , а пикнометриче­ская 3,514 Мг/м 3 .

Механические свойства

Алмаз по твердости превосходит все другие вещества, поэтому его можно шлифовать и вообще обрабатывать только алмазным порошком. Несмотря на высокую твердость, алмаз очень хрупок.

Микротвердость алмаза по Кнуппу при 20 °С 88200 МПа. Мнкротвер-дость, определенная при помощи обычной пирамиды, 78500 МПа. Вре­менное сопротивление при растяжении при комнатной температуре а в - = 1760-4-1780 МПа; модуль нормальной упругости при растяжении Е= = 1141,1 ГПа, в направлении £=1202 ГПа, а в направлении £=1052 ГПа (данные относятся к комнатной температуре).

Графит в отличие от алмаза обладает незначительной твердостью. По шкале Мооса твердость алмаза равна 10, а твердость графита 1, Временное сопротивление при растяжении пористого графита о„=0,34+ -*-0,69 МПа, а электродного графита о п =3,43-И7,2 МПа (вдоль элект­рода). В поперечном направлении а„=6,18н-8,93 МПа. На нитях из графита можно получить o B =26- i -28 МПа; на «усах» из графита до­стигнута прочность 480-500 МПа (данные относятся к комнатной температуре). Графит сравнительно хорошо сопротивляется сжимаю­щим нагрузкам. Так, о™ реакторного графита при 20 "С составляет 20,6-34,3 МПа. В уплотненном графите эта характеристика может быть доведена до 70 МПа. Сжимаемость графита и=3,24*10 -11 Па- 1 , сжима­емость алмаза х = 0,23-Ю - " Па -1 .

Химические свойства

В соединениях проявляет степени окисления -4, +2 и +4.

Углерод, независимо от модификации, обладает малой химической активностью. Он не растворяется в обычных растворителях, но хорошо растворяется в расплавленных металлах, особенно в металлах IVA - V1IIA подгрупп Периодической системы. При охлаждении расплавов углерод выпадает или в виде свободного графита, или в виде соедине­ний металла с углеродом. Алмаз отличается очень высокой химической стойкостью. На него не действуют ни кислоты, ни основания. При на­греве в кислороде выше 800 °С алмаз сгорает до С0 2 . Если алмаз на­гревать без доступа воздуха, то ои превращается в графит.

Графит легче поддается химическому воздействию, чем алмаз; при нагреве в чистом кислороде он воспламеняется уже при 637-642 С. Графит, смоченный концентрированной азотной кислотой, при нагреве до красного каления вспучивается. При обработке концентрированной серной кислотой в присутствии окислителей графит разбухает и стано­вится темно-синим. Некоторые сорта черного углерода воспламеняются в атмосфере кислорода уже при незначительном нагреве. Со фтором черный углерод уже взаимодействует при обычной температуре. При нагреве углерод соединяется со многими элементами: водородом, серой, кремнием, бором и др. В природе наблюдается большое разнообразие соединений углерода с водородом.

При взаимодействии с кислородом углерод образует два простых ок­сида. Продуктом полного сгорания углерода является диоксид С0 2 , при неполном сгорании образуется оксид СО. Теплота образования С0 2 при окислении графита Д# 0 бр=395,2 кДж/моль, а СО Д// 0 бр= 111,5 кДж/ /моль, т. е. значительно ниже. СОг - бесцветный, негорючий газ со сла­бым сладковатым запахом. Он тяжелее воздуха в 1,529 раза, легко сжижается при 20 °С и давлении 5,54 МПа, образуя бесцветную жид­кость. Критическая температура С0 2 31,4 °С, критическое давление 7,151 МПа. При нормальном давлении С0 2 сублимируется при

78,32 °С. СО образуется в процессе сжигания угля при недостаточном притоке воздуха, представляет собой ядовитый газ, не имеющий ни за­паха, ни цвета; он не поддерживает горения, но сам является горючим; в 0,967 раза легче воздуха. При атмосферном давлении СО сжижается при - 191,34°С и затвердевает прн -203,84 °С.

Углерод взаимодействует с серой. При пропускании ее паров над раскаленным древесным углем образуется двусернистый углерод CS 2 (сероуглерод). Низшие сульфиды углерода неустойчивы. Сероуглерод представляет бесцветную жидкость удушливого запаха. Температура кипения CS 2 46,2 "С, затвердевания -110,6°С. Давление пара CS 2 при 293 К равно 0,0385 МПа. Сероуглерод - эндотермическое соедине­ние, при его распаде освобождается около 64,5 кДж/моль. CS 2 взрыво­опасно, однако взрывная реакция широко не распространяется. Из дру­гих соединений углерода с серой следует отметить COS, представляю­щее собой бесцветный газ, не имеющий запаха; COS легко воспламе­няется. Образуется COS при совместном пропускании смеси паров серы и оксида углерода через раскаленную трубку. COS сжижается при ^49,9 "С, а затвердевает при -137,8 °С.

Углерод вступает в реакции с азотом. При прокаливании без досту­па воздуха различных органических продуктов (кожи, шерсти и др) образуются соединения, содержащие одновалентный радикал CN. Про­стейшую кислоту HCN, являющуюся производной циана, называют си­нильной, а ее солн цианидами. Синильная кислота - бесцветная жид­кость, кипящая при 26,66 °С; в большом разведении имеет запах, сход­ный с запахом горького миндаля. Затвердевает HCN при -14,85 °С, чрезвычайно ядовита. Цианиды калия и натрия широко применяются при производстве золота, а также в гальванотехнике благородных ме­таллов.

Имеются соединения углерода с галогенами. Фторид углерода CF 4 - бесцветный газ с температурой кипения -128 "С, температурой плавле­ния -183,44 °С. Получают CF 4 или при непосредственном взаимодейст­вии фтора и углерода или при воздействии AgF на СС1 4 при 300 °С. Четыреххлористый углерод ССЦ- бесцветная, негорючая жидкость со слабым характерным запахом. ССЦ кипит при 76,86 °С и затвердевает при -22,77 "С. При обычной температуре ССЦ химически инертен, не реагирует нн с основаниями, ни с кислотами. ССЦ очень хорошо рас­творяет органические вещества; его часто используют в качестве рас­творителя жиров, масел, смол и др.

Соединения углерода с металлами, а также с бором и кремнием на­зывают карбидами. Карбиды подразделяют на два основных класса: разлагаемые водой и не подвергающиеся действию воды. Карбиды, разлагаемые водой, можно рассматривать как соли ацетилена; в соот­ветствии с этим состав отвечает общим формулам Ме^Сг, Ме"С 2 и Me 2 (С 2)з. Водой или разбавленными кислотами ацетилиды расщепля­ются с образованием ацетилена.

К группе карбидов, устойчивых к действию воды или разбавленных кислот, относятся соединения углерода с переходными металлами, а также SiC . Кристаллическая структура карбидов, за исключением SiC , кубическая, типа NaCl . Такие кабриды иногда называют металлоподоб-ными соединениями, так как они обладают высокой электро- и тепло­проводностью, имеют металлический блеск. Соединение кремния с угле­родом SiC - карборунд. Он обладает очень высокой твердостью, а по своей кристаллической структуре подобен алмазу. Теплота образования SiC Д# 0 бр= 117,43 кДж/моль. К числу карбидов, стойких к воздействию воды и неразбавленных кислот, относятся также В 4 С, Сг 4 С, Сг 3 С 2 и некоторые другие.

Области применения

Наиболее широкое применение углерод получил в металлургической промышленности, прежде всего в доменном производстве, где исполь­зуется его способность восстанавливать железо из руд. Углерод в до­менном производстве применяют в виде кокса, который получают путем нагрева каменного угля без доступа воздуха. Металлургический кокс содержит до 90 % С, 1 % Н, 3 % О, 0,5-1 % N и 5 % золы, т.е. не­сгораемых составных частей. Кокс горит синеватым пламенем без ко­поти, а его теплотворная способность составляет 30-32 МДж/кг. В ка­честве огнеупорного материала для плавильных тиглей, стойкого к быст­рой смене температур, применяют графит. Его также используют для изготовления карандашей, смазки, огнеупорной краски и др.

Графит, обладающий высокой электрической проводимостью, нахо­дит разнообразное применение в электротехнике и гальванопластике (электроды, микрофонные угли, некоторые сорта графита для ламп на­каливания и др.). Он является также одним из конструкционных мате­риалов для ядерных реакторов. Производство графита в нашей стране регламентируется ГОСТ 17022-81, который распространяется на основ­ные виды естественного графита. Согласно этому ГОСТу производится три марки графита смазочного ГС-1 до 3, две марки графита тигельно­го ГТ, две марки графита литейного ГЛ, три марки графита аккумуля­торного ГАК, четыре марки графита электроугольного ГЭУ, три марки графита элементарного ГЭ (служит для производства гальванических элементов), две марки графита карандашного ГК, две марки графита алмазного ГАЛ (для производства алмазов и других изделий, где тре­буются высокие инертность, чистота, электрическая проводимость). Со­держание золы в низших сортах смазочного, электродного и литейного графита 13-18 °/о, а в отдельных случаях до 25 % по массе (например,

В атомной энергетике применяют искусственный графит, способ по-л\ 1сния которого был разработан еще в конце прошлого века.

Углерод способен образовывать несколько аллотропных модификаций. Это алмаз (наиболее инертная аллотропная модификация), графит, фуллерен и карбин.

Древесный уголь и сажа представляют собой аморфный углерод. Углерод в таком состоянии не имеет упорядоченной структуры и фактически состоит из мельчайших фрагментов слоев графита. Аморфный углерод, обработанный горячим водяным паром, называют активированным углем. 1 грамм активированного угля из-за наличия в нем множества пор имеет общую поверхность более трехсот квадратных метров! Благодаря своей способности поглощать различные вещества активированный уголь находит широкое применение как наполнитель фильтров, а также как энтеросорбент при различных видах отравлений.

С химической точки зрения аморфный углерод является наиболее активной его формой, графит проявляет среднюю активность, а алмаз является крайне инертным веществом. По этой причине, рассматриваемые ниже химические свойства углерода следует прежде всего относить к аморфному углероду.

Восстановительные свойства углерода

Как восстановитель углерод реагирует с такими неметаллами как, например, кислород, галогены, сера.

В зависимости от избытка или недостатка кислорода при горении угля возможно образование угарного газа CO или углекислого газа CO 2:

При взаимодействии углерода со фтором образуется тетрафторид углерода:

При нагревании углерода с серой образуется сероуглерод CS 2:

Углерод способен восстанавливать металлы после алюминия в ряду активности из их оксидов. Например:

Также углерод реагирует и с оксидами активных металлов, однако в этом случае наблюдается, как правило, не восстановление металла, а образование его карбида:

Взаимодействие углерода с оксидами неметаллов

Углерод вступает в реакцию сопропорционирования с углекислым газом CO 2:

Одним из наиболее важных с промышленной точки зрения процессов является так называемая паровая конверсия угля . Процесс проводят, пропуская водяной пар через раскаленный уголь. При этом протекает следующая реакция:

При высокой температуре углерод способен восстанавливать даже такое инертное соединение как диоксид кремния. При этом в зависимости от условия возможно образование кремния или карбида кремния (карборунда ):

Также углерод как восстановитель реагирует с кислотами окислителями, в частности, концентрированными серной и азотной кислотами:

Окислительные свойства углерода

Химический элемент углерод не отличается высокой электроотрицательностью, поэтому образуемые им простые вещества редко проявляют окислительные свойства по отношению к другим неметаллам.

Примером таких реакций является взаимодействие аморфного углерода с водородом при нагревании в присутствии катализатора:

а также с кремнием при температуре 1200-1300 о С:

Окислительные свойства углерод проявляет по отношению к металлам. Углерод способен реагировать с активными металлами и некоторыми металлами средней активности. Реакции протекают при нагревании:

Карбиды активных металлов гидролизуются водой:

а также растворами кислот-неокислителей:

При этом образуются углеводороды, содержащие углерод в той же степени окисления, что и в исходном карбиде.

Химические свойства кремния

Кремний может существовать, как и углерод в кристаллическом и аморфном состоянии и, также, как и в случае углерода, аморфный кремний существенно более химически активен, чем кристаллический.

Иногда аморфный и кристаллический кремний, называют его аллотропными модификациями, что, строго говоря, не совсем верно. Аморфный кремний представляет собой по сути конгломерат беспорядочно расположенных друг относительно друга мельчайших частиц кристаллического кремния.

Взаимодействие кремния с простыми веществами

неметаллами

При обычных условиях кремний ввиду своей инертности реагирует только со фтором:

С хлором, бромом и йодом кремний реагирует только при нагревании. При этом характерно, что в зависимости от активности галогена, требуется и соответственно различная температура:

Так с хлором реакция протекает при 340-420 о С:

С бромом – 620-700 о С:

С йодом – 750-810 о С:

Реакция кремния с кислородом протекает, однако требует очень сильного нагревания (1200-1300 о С) ввиду того, что прочная оксидная пленка затрудняет взаимодействие:

При температуре 1200-1500 о С кремний медленно взаимодействует с углеродом в виде графита с образованием карборунда SiC – вещества с атомной кристаллической решеткой подобной алмазу и почти не уступающего ему в прочности:

С водородом кремний не реагирует.

металлами

Ввиду своей низкой электроотрицательности кремний может проявлять окислительные свойства лишь по отношению к металлам. Из металлов кремний реагирует с активными (щелочными и щелочноземельными), а также многими металлами средней активности. В результате такого взаимодействия образуются силициды:

Взаимодействие кремния со сложными веществами

С водой кремний не реагирует даже при кипячении, однако аморфный кремний взаимодействует с перегретым водяным паром при температуре около 400-500 о С. При этом образуется водород и диоксид кремния:

Из всех кислот кремний (в аморфном состоянии) реагирует только с концентрированной плавиковой кислотой:

Кремний растворяется в концентрированных растворах щелочей. Реакция сопровождается выделением водорода.