Гравитационную постоянную измерили с рекордно малой ошибкой. Что такое гравитационная постоянная, как ее рассчитывают и где применяют данную величину

Являясь одной из фундаментальных величин в физике, гравитационная постоянная впервые была упомянута в 18-м веке. Тогда же были предприняты первые попытки измерить ее значение, однако в силу несовершенства приборов и недостаточных знаний в данной области, сделать это удалось лишь в середине 19-го столетия. Позже полученный результат неоднократно корректировался (в последний раз это было сделано в 2013 году). Однако же следует отметить, что принципиального различия между первым (G = 6,67428(67)·10 −11 м³·с −2 ·кг −1 или Н·м²·кг −2) и последним (G = 6,67384(80)·10 −11 м³·с −2 ·кг −1 или Н·м²·кг −2) значениями не существует.

Применяя данный коэффициент для практических расчетов, следует понимать, что константа является таковой в глобальных вселенских понятиях (если не делать оговорок на физику элементарных частиц и прочие малоизученные науки). А это значит, что гравитационная постоянная Земли, Луны или Марса не будут отличаться друг от друга.

Эта величина является базовой константой в классической механике. Поэтому гравитационная постоянная участвует в самых различных расчетах. В частности, не обладая сведениями о более-менее точном значении данного параметра, ученые не смогли бы вычислять столь важный в космической отрасли коэффициент, как ускорение свободного падения (который для каждой планеты или прочего космического тела будет своим).

Однако же Ньютону, озвучившему в общем виде, гравитационная постоянная была известна лишь в теории. То есть он смог сформулировать один из важнейших физических постулатов, не обладая сведениями о величине, на которой он, по сути, основывается.

В отличие от прочих фундаментальных констант, о том, чему равна гравитационная постоянная, физика может сказать лишь с определенной долей точности. Ее значение периодически получают заново, причем каждый раз оно отличается от предыдущего. Большинство ученых полагает, что данный факт связан не с ее изменениями, а с более банальными причинами. Во-первых, это методы измерения (для вычисления этой константы проводят различные эксперименты), а во-вторых, точность приборов, которая постепенно возрастает, данные уточняются, и получается новый результат.

С учетом того, что гравитационная постоянная является величиной, измеряемой 10 в -11 степени (что для классической механики сверхмалое значение), в постоянном уточнении коэффициента нет ничего удивительного. Тем более что коррекции подвергается символ, начиная с 14 после запятой.

Однако же есть в современной волновой физике иная теория, которую выдвинули Фред Хойл и Дж. Нарликар еще в 70-е годы прошлого века. Согласно их предположениям, гравитационная постоянная уменьшается со временем, что влияет на многие иные показатели, считающиеся константами. Так, американским астрономом ван Фландерном был отмечен феномен незначительного ускорения Луны и прочих небесных тел. Руководствуясь данной теорией, следует предположить, что никаких глобальных погрешностей в ранних вычислениях не было, а разница в полученных результатах объясняется изменениями самого значения константы. Эта же теория говорит о непостоянстве некоторых других величин, таких как

Раздел очень прост в использовании. В предложенное поле достаточно ввести нужное слово, и мы вам выдадим список его значений. Хочется отметить, что наш сайт предоставляет данные из разных источников – энциклопедического, толкового, словообразовательного словарей. Также здесь можно познакомиться с примерами употребления введенного вами слова.

Найти

Что значит "гравитационная постоянная"

Энциклопедический словарь, 1998 г.

гравитационная постоянная

ГРАВИТАЦИОННАЯ ПОСТОЯННАЯ (обозначается G) коэффициент пропорциональности в законе тяготения Ньютона (см. Всемирного тяготения закон), G = (6,67259+0,00085)·10-11 Н·м2/кг2.

Гравитационная постоянная

коэффициент пропорциональности G в формуле, выражающей закон тяготения Ньютона F = G mM / r2 , где F ≈ сила притяжения, М и m ≈ массы притягивающихся тел, r ≈ расстояние между телами. Другие обозначения Г. п.: g или f (реже k2). Числовое значение Г. п. зависит от выбора системы единиц длины, массы, силы. В СГС системе единиц

G = (6,673 ╠ 0,003)×10-8дн×см2×г-2

или см3×г
--1×сек-2, в Международной системе единиц G = (6,673 ╠ 0,003)×10-11×н×м2×кг
--2

или м3×кг-1×сек-2. Наиболее точное значение Г. п. получено из лабораторных измерений силы притяжения между двумя известными массами с помощью крутильных весов.

При вычислении орбит небесных тел (например, спутников) относительно Земли используется геоцентрическая Г. п. ≈ произведение Г. п. на массу Земли (включая её атмосферу):

GE = (3,98603 ╠ 0,00003)×1014×м3×сек-2.

При вычислении орбит небесных тел относительно Солнца используется гелиоцентрическая Г. п. ≈ произведение Г. п. на массу Солнца:

GSs = 1,32718×1020× м3×сек-2.

Эти значения GE и GSs соответствуют системе фундаментальных астрономических постоянных, принятой в 1964 на съезде Международного астрономического союза.

Ю. А. Рябов.

Википедия

Гравитационная постоянная

Гравитацио́нная постоя́нная , постоянная Ньютона (обозначается обычно , иногда или) - фундаментальная физическая постоянная, константа гравитационного взаимодействия.

Согласно Ньютоновскому закону всемирного тяготения, сила гравитационного притяжения между двумя материальными точками с массами и , находящимися на расстоянии , равна:

$F=G\frac{m_1 m_2}{r^2}.$

Коэффициент пропорциональности в этом уравнении называется гравитационной постоянной . Численно она равна модулю силы тяготения, действующей на точечное тело единичной массы со стороны другого такого же тела, находящегося от него на единичном расстоянии.

6,67428(67)·10 м·с·кг, или Н·м²·кг,

в 2010 году значение было исправлено на:

6,67384(80)·10 м·с·кг, или Н·м²·кг.

В 2014 году значение гравитационной постоянной, рекомендованное CODATA, стало равным:

6,67408(31)·10 м·с·кг, или Н·м²·кг.

В октябре 2010 в журнале Physical Review Letters появилась статья, предлагающая уточнённое значение 6,67234(14), что на три стандартных отклонения меньше величины , рекомендованной в 2008 г. Комитетом данных для науки и техники (CODATA), но соответствует более раннему значению CODATA, представленному в 1986 г. Пересмотр величины , произошедший в период с 1986 г. по 2008 г., был вызван исследованиями неупругости нитей подвесок в крутильных весах. Гравитационная постоянная является основой для перевода других физических и астрономических величин, таких, например, как массы планет во Вселенной, включая Землю, а также других космических тел, в традиционные единицы измерения, например, килограммы. При этом из-за слабости гравитационного взаимодействия и результирующей малой точности измерений гравитационной постоянной отношения масс космических тел обычно известны намного точнее, чем индивидуальные массы в килограммах.

Как ни странно это может показаться, но с точным определением гравитационной постоянной у исследователей всегда были проблемы. Авторы статьи говорят о трех сотнях предыдущих попыток сделать это, но все они приводили к значениям, которые не совпадали с другими. Даже в последние десятилетия, когда точность измерений значительно возросла, ситуация оставалась прежней — данные друг с другом, как и раньше, совпадать отказывались.

Основной метод измерения G остался неизменным с 1798 года, когда Генри Кавендиш решил использовать для этого крутильные (или торсионные) весы. Из школьного курса известно, что собой представляла такая установка. В стеклянном колпаке на метровой нити из посеребренной меди висело деревянное коромысло из свинцовых шаров, каждый по 775 г.

Wikimedia Commons Вертикальный разрез установки (Копия рисунка из отчёта Г. Кавендиша «Experiments to determine the Density of the Earth», опубликованного в Трудах Лондонского Королевского Общества за 1798 г. (часть II) том 88 стр.469-526)

К ним подносили свинцовые шары массой 49,5 кг, и в результате действия гравитационных сил коромысло закручивалось на некий угол, зная который и зная жесткость нити, можно было вычислить величину гравитационной постоянной.

Проблема состояла в том, что, во-первых, гравитационное притяжение очень невелико, плюс на результат могут влиять другие массы, экспериментом не учтенные и от которых не было возможности экранироваться.

Второй минус, как ни странно, сводился к тому, что атомы в подносимых массах находились в постоянном движении, и при малом воздействии гравитации этот эффект тоже сказывался.

Ученые решили добавить к гениальной, но в данном случае недостаточной, идее Кавендиша свой метод и использовали вдобавок другой прибор, квантовый интерферометр, известный в физике под названием СКВИД (от англ. SQUID, Superconducting Quantum Interference Device — «сверхпроводящий квантовый интерферометр»; в буквальном переводе с английского squid — «кальмар»; сверхчувствительные магнитометры, используемые для измерения очень слабых магнитных полей ).

Этот прибор отслеживает минимальные отклонения от магнитного поля.

Заморозив лазером 50 кг шара из вольфрама до температур, близких к абсолютному нулю, отследив по изменениям магнитного поля перемещения в этом шаре атомов и, таким образом, исключив их влияние на результат измерения, исследователи получили значение гравитационной постоянной с точностью 150 частей на миллион, то есть 15 тысячных процента. Теперь значение этой постоянной, заявляют ученые, равно 6,67191(99)·10 −11 м 3 ·с −2 ·кг −1 . Предыдущее значение G составляло 6,67384(80)·10 −11 м 3 ·с −2 ·кг −1 .

И это довольно странно.

Гравитационная постоянная является основой для перевода других физических и астрономических величин, таких, например, как массы планет во Вселенной, включая Землю, а также других космических тел, в традиционные единицы измерения, и пока она все время другая. В 2010 году , в которой американские ученые Гарольд Паркс и Джеймс Фаллер предлагали уточненное значение 6,67234(14)·10 −11 м 3 ·с −2 ·кг −1 . Это значение было получено ими путем регистрации с помощью лазерного интерферометра изменения расстояний между маятниками, подвешенными на струнах, при их колебаниях относительно четырех вольфрамовых цилиндров — источников гравитационного поля — с массами 120 кг каждый. Второе плечо интерферометра, служащее стандартом расстояния, фиксировалось между точками подвеса маятников. Полученная Парксом и Фаллером величина оказалась на три стандартных отклонения меньше величины G , рекомендованной в 2008 году Комитетом данных для науки и техники (CODATA) , но соответствует более раннему значению CODATA, представленному в 1986 году. Тогда сообщалось , что пересмотр величины G, произошедший в период с 1986 по 2008 год был вызван исследованиями неупругости нитей подвесок в крутильных весах.

История измерения

Гравитационная постоянная фигурирует в современной записи закона всемирного тяготения , однако отсутствовала в явном виде у Ньютона и в работах других ученых вплоть до начала XIX века. Гравитационная постоянная в нынешнем виде впервые была введена в закон всемирного тяготения, по-видимому, только после перехода к единой метрической системе мер. Возможно впервые это было сделано французским физиком Пуассоном в «Трактате по механике» (1809), по крайней мере никаких более ранних работ, в которых фигурировала бы гравитационная постоянная, историками не выявлено. В 1798 году Генри Кавендиш поставил эксперимент с целью определения средней плотности Земли с помощью крутильных весов , изобретённых Джоном Мичеллом (Philosophical Transactions 1798). Кавендиш сравнивал маятниковые колебания пробного тела под действием тяготения шаров известной массы и под действием тяготения Земли. Численное значение гравитационной постоянной было вычислено позже на основе значения средней плотности Земли. Точность измеренного значения G со времён Кавендиша увеличилась, но и его результат был уже достаточно близок к современному.

См. также

Примечания

Ссылки

  • Гравитационная постоянная - статья из Большой советской энциклопедии

Wikimedia Foundation . 2010 .

Смотреть что такое "Гравитационная постоянная" в других словарях:

    ГРАВИТАЦИОННАЯ ПОСТОЯННАЯ - (тяготения постоянная) (γ, G) универсальная физ. постоянная, входящая в формулу (см.) … Большая политехническая энциклопедия

    - (обозначается G) коэффициент пропорциональности в законе тяготения Ньютона (см. Всемирного тяготения закон), G = (6,67259.0,00085).10 11 Н.м²/кг² … Большой Энциклопедический словарь

    - (обозначение G), коэффициент закона ГРАВИТАЦИИ Ньютона. Равен 6,67259.10 11 Н.м2.кг 2 … Научно-технический энциклопедический словарь

    Фундаментальная физ. константа G, входящая в закон тяготения Ньютона F=GmM/r2, где m и М массы притягивающихся тел (матер. точек), r расстояние между ними, F сила притяжения, G= 6,6720(41)X10 11 Н м2 кг 2(на 1980). Наиболее точно значение Г. п.… … Физическая энциклопедия

    гравитационная постоянная - — Тематики нефтегазовая промышленность EN gravitational constant … Справочник технического переводчика

    гравитационная постоянная - gravitacijos konstanta statusas T sritis fizika atitikmenys: angl. gravitation constant; gravity constant vok. Gravitationskonstante, f rus. гравитационная постоянная, f; постоянная всемирного тяготения, f pranc. constante de la gravitation, f … Fizikos terminų žodynas

    - (обозначается G), коэффициент пропорциональности в законе тяготения Ньютона (см. Всемирного тяготения закон), G = (6,67259 + 0,00085)·10 11 Н·м2/кг2. * * * ГРАВИТАЦИОННАЯ ПОСТОЯННАЯ ГРАВИТАЦИОННАЯ ПОСТОЯННАЯ (обозначается G), коэффициент… … Энциклопедический словарь

    Тяготения постоянная, универс. физ. постоянная G, входящая в ф лу, выражающую ньютоновский закон тяготения: G = (6,672 59 ± 0,000 85)*10 11Н*м2/кг2 … Большой энциклопедический политехнический словарь

    Коэффициент пропорциональности G в формуле, выражающей закон тяготения Ньютона F = G mM / r2 , где F сила притяжения, М и m массы притягивающихся тел, r расстояние между телами. Другие обозначения Г. п.: γ или f (реже k2). Числовое… … Большая советская энциклопедия

    - (обозначается G), коэф. пропорциональности в законе тяготения Ньютона (см. Всемирного тяготения закон), G = (6,67259±0,00085) х 10 11 Н х м2/кг2 … Естествознание. Энциклопедический словарь

Книги

  • Вселенная и физика без "темной энергии" (открытия, идеи, гипотезы). В 2 томах. Том 1 , О. Г. Смирнов. Книги посвящены проблемам физики и астрономии, существующим в науке десятки и сотни лет от Г. Галилея, И. Ньютона, А. Эйнштейна до наших дней. Мельчайшие частицы материи и планеты, звезды и…
m 1 и m 2 , находящимися на расстоянии r , равна: F = G m 1 m 2 r 2 . {\displaystyle F=G{\frac {m_{1}m_{2}}{r^{2}}}.} G = 6,67408(31)·10 −11 м 3 ·с −2 ·кг −1 , или Н·м²·кг −2 .

Гравитационная постоянная является основой для перевода других физических и астрономических величин, таких, например, как массы планет во Вселенной, включая Землю, а также других космических тел, в традиционные единицы измерения, например, килограммы. При этом из-за слабости гравитационного взаимодействия и результирующей малой точности измерений гравитационной постоянной отношения масс космических тел обычно известны намного точнее, чем индивидуальные массы в килограммах.

Гравитационная постоянная является одной из основных единиц измерения в планковской системе единиц .

История измерения

Гравитационная постоянная фигурирует в современной записи закона всемирного тяготения , однако отсутствовала в явном виде у Ньютона и в работах других ученых вплоть до начала XIX века. Гравитационная постоянная в нынешнем виде впервые была введена в закон всемирного тяготения, по-видимому, только после перехода к единой метрической системе мер. Возможно впервые это было сделано французским физиком Пуассоном в «Трактате по механике» (1809), по крайней мере никаких более ранних работ, в которых фигурировала бы гравитационная постоянная, историками не выявлено [ ] .

G = 6,67554(16) × 10 −11 м 3 ·с −2 ·кг −1 (стандартная относительная погрешность 25 ppm (или 0,0025 %), первоначальное опубликованное значение несколько отличалось от окончательного из-за ошибки в расчётах и было позже исправлено авторами) .

См. также

Примечания

  1. В общей теории относительности обозначения, использующие букву G , применяются редко, поскольку там эта буква обычно используется для обозначения тензора Эйнштейна.
  2. По определению массы, входящие в это уравнение, - гравитационные массы , однако расхождения между величиной гравитационной и инертной массы какого-либо тела до сих пор не обнаружено экспериментально. Теоретически в рамках современных представлений они вряд ли отличаются. Это в целом было стандартным предположением и со времен Ньютона.
  3. Новые измерения гравитационной постоянной еще сильнее запутывают ситуацию // Элементы.ру , 13.09.2013
  4. CODATA Internationally recommended values of the Fundamental Physical Constants (англ.) . Проверено 30 июня 2015.
  5. Разные авторы указывают разный результат, от 6,754⋅10 −11 м²/кг² до (6,60 ± 0,04)⋅10 −11 м³/(кг·с³) - см. Эксперимент Кавендиша#Вычисленное значение .
  6. Игорь Иванов. Новые измерения гравитационной постоянной ещё сильнее запутывают ситуацию (неопр.) (13 сентября 2013). Проверено 14 сентября 2013.
  7. Так ли постоянна гравитационная постоянная? Архивная копия от 14 июля 2014 на Wayback Machine Новости науки на портале cnews.ru // публикация от 26.09.2002
  8. Brooks, Michael Can Earth"s magnetic field sway gravity? (неопр.) . NewScientist (21 September 2002). [Архивная копия на Wayback Machine Архивировано] 8 февраля 2011 года.
  9. Ерошенко Ю. Н. Новости физики в сети Internet (по материалам электронных препринтов) , УФН , 2000 г., т. 170, № 6, с. 680
  10. Phys. Rev. Lett. 105 110801 (2010) в ArXiv.org
  11. Новости физики за октябрь 2010
  12. Quinn Terry , Parks Harold , Speake Clive , Davis Richard. Improved Determination of G Using Two Methods (англ.) // Physical Review Letters. - 2013. - 5 September (vol. 111 , no. 10 ). - ISSN 0031-9007 . - DOI :10.1103/PhysRevLett.111.101102 .
  13. Quinn Terry , Speake Clive , Parks Harold , Davis Richard. Erratum: Improved Determination of G Using Two Methods (англ.) // Physical Review Letters. - 2014. - 15 July (vol. 113 , no. 3 ). - ISSN 0031-9007 . - DOI :10.1103/PhysRevLett.113.039901 .
  14. Rosi G. , Sorrentino F. , Cacciapuoti L. , Prevedelli M. , Tino G. M.