Схема емкостного датчика приближения на к561ла7. Бесконтактный емкостный датчик – сделай сам. Лазерные или фотодатчики

Сегодня никого не удивишь различными по назначению и эффективности электронными устройствами превентивного предупреждения, которые оповещают людей или включают охранную сигнализацию задолго до непосредственного контакта нежелательного гостя с охраняемым рубежом (территорией). Многие из таких узлов, описанных в литературе, например в , по мнению автора, интересны, но усложнены.

В противовес им разработана простая электронная схема бесконтактного емкостного датчика (рис. 2.2), собрать которую по силам даже начинающему радиолюбителю. Устройство имеет высокую чувствительность по входу, что позволяет использовать его для предупреждения о приближении человека к сенсору Е1.

Принцип действия устройства основан на изменении емкости между сенсором-антенной Е1 и «землей» (общим проводом: всем тем, что соотносится к заземляющему контуру, — в данном случае это пол и стеніі помещения). При приближении человека эта емкость существенно изменяется, что оказывается достаточным для срабатывания микросхемы K561TЛ1.

Рис. 2.2. Электрическая схема бесконтактного емкостного датчика

В основе конструкции — два элемента микросхемы K561TЛ1 (DD1), включенные как инверторы. Эта микросхема имеет в своем составе четыре однотипных элемента с функцией 2И-НЕ с триггерами Шмита с гистерезисом (задержкой) на входе и инверсией по выходу.

Применение микросхемы K561TЛ1 обусловлено малым потреблением тока, высокой помехозащищенностью (до 45 % от уровня напряжения питания), работой в широком диапазоне питающего напряжения (в диапазоне 3—15 В), защищенностью по входу от статического электричества и кратковременного превышения входных уровней, и многими другими достоинствами, которые позволяют широко использовать микросхему в радиолюбительских конструкциях, не требуя каких-либо особых мер предосторожности и защиты.

Кроме того, микросхема K561TЛ1 позволяет включать свои независимые логические элементы параллельно, в качестве буферных элементов, вследствие чего мощность выходного сигнала пропорционально увеличивается. Триггеры Шмита—бистабильные схемы, способные работать с медленно возрастающими входными сигналами, в том числе с примесью помех. При этом обеспечивающие по выходу крутые фронты импульсов можно передавать в последующие узлы схемы для стыковки с другими ключевыми элементами и микросхемами. Микросхема K561TЛ (как, впрочем, и K561TЛ2) могут выделять управляющий сигнал (в том числе цифровой) для других устройств из аналогового или нечеткого входного импульса.

Зарубежный аналог К561ТЛ1 — CD4093B.

Схема включения инверторов — классическая, она описана в справочных изданиях. Особенность представленной разработки — в конструктивных нюансах. После включения питания на входе элемента DD1.1 присутствует неопределенное состояние, близкое к низкому логическому уровню. На выходе DD1.1 — высокий уровень, на выходе DD1.2 — опять низкий. Транзистор VT1 закрыт. Пьезоэлектрический капсюль НАІ (с внутренним генератором 34) не активен.

К сенсору Е1 подключена антенна — подойдет автомобильная телескопическая. При нахождении человека рядом с антенной изменяется емкость между штырем антенны и полом. От этого переключаются элементы DD1.1, DD1.2 в противоположное состояние. Для переключения узла человек среднего роста должен находиться (проходить) рядом с антенной длиной 35 см на расстоянии до 1,5 м. На выводе 4 микросхемы появляется высокий уровень напряжения, вследствие этого транзистор VT1 открывается и звучит капсюль НА1.

Подбором емкости конденсатора С1 можно изменить режим работы элементов микросхемы. Так, при уменьшении емкости С1 до 82—120 пФ узел работает иначе. Теперь звуковой сигнал звучит только, пока на вход DD1.1 воздействует наводки переменного напряжения — прикосновение человека.

Электрическую схему (рис. 2.2) можно использовать и как основу для триггерного сенсорного датчика. Для этого исключают постоянный резистор R1, экранированный провод, а сенсором являются контакты микросхемы 1 и 2.

Последовательно с R1 подключают экранированный провод (кабель РК-50, РК-75, экранированный провод для сигналов ЗЧ — подходят все типы) длиной 1—1,5 м, экран соединяется с общим проводом, центральная жила на конце соединяется со штырем антенны.

При соблюдении указанных рекомендаций и применении указанных в схеме типов и номиналов элементов, узел генерирует звуковой сигнал частотой около 1 кГц (зависит от типа капсюля НА1) при приближении человека к штырю антенны на расстояние 1,5—1 м. Триггерный эффект отсутствует. Как только объект удаляется от антенны, датчик переходит в режим охраны (ожидания).

Эксперимент проводился также с животными— кошкой и собакой: на их приближение к сенсору-антенне узел не реагирует.

Возможности устройства трудно переоценить. В авторском варианте оно смонтировано рядом с дверной коробкой; входная дверь — металлическая.

Громкость сигнала ЗЧ, излучаемого капсюлем НА1, достаточна для того, чтобы услышать его на закрытой лоджии (она сопоставима с громкостью квартирного звонка).

Источник питания— стабилизированный, с напряжением 9—15 В, с хорошей фильтрацией напряжения пульсаций по выходу. Ток потребления ничтожно мал в режиме ожидания (несколько микроампер) и увеличивается до 22—28 мА при активной работе излучателя НА1. Бестрансформаторный источник применять нельзя из-за вероятности поражения электрическим током. Оксидный конденсатор С2 действует как дополнительный фильтр по питанию, его тип — К50-35 или аналогичный, на рабочее напряжение не ниже напряжения источника питания.

При эксплуатации узла выявлены интересные особенности. Напряжение питания узла влияет на его работу: при увеличении напряжения питания до 15 В в качестве сенсора-антенны используется только обыкновенный многожильный неэкранированный электрический медный провод сечением 1—2 мм длиной 1 м; никакого экрана и резистора R1 в таком случае не надо, электрический медный провод подсоединяется непосредственно к выводам 1 и 2 элемента DD1.1. Эффект аналогичен. При изменении фазировки сетевой вилки источника питания узел катастрофически теряет чувствительность и способен работать только как сенсор (реагирует на прикосновение к Е1). Это актуально при любом значении напряжения источника питания в диапазоне 9—15 В. Очевидно, что второе назначение данной схемы — обыкновенный сенсор (или сенсор-триггер).

Эти нюансы следует учитывать при повторении устройства. Однако в случае правильного подключения, описанного здесь, получается важная составляющая охранной сигнализации, обеспечивающей безопасность жилищу, предупреждающей хозяев еще до возникновения нештатной ситуации.

Монтаж элементов осуществляется компактно на плате из стеклотекстолита. Корпус для устройства — любой из диэлектрического (непроводящего) материала. Для контроля включения питания устройство может быть снабжено индикаторным светодиодом, подключенным параллельно источнику питания.

Налаживание при точном соблюдении рекомендаций не требуется. Если экспериментировать с длиной экранирующего кабеля, длиной и площадью сенсора-антенны Е1 и изменением напряжения питания, возможно потребуется скорректировать сопротивление резистора R1 в широких пределах — от 0,1 до 100 МОм. Для уменьшения чувствительности увеличивают емкость конденсатора С1. Если это не приносит результатов, параллельно С1 включают постоянный резистор сопротивлением 5—10 МОм.

Рис. 2.3. Емкостной датчик

Неполярный конденсатор С1 — типа КМ6. Постоянный резистор R2— МЛТ-0,25. Резистор R1 — типа ВС-0,5, ВС-1. Транзистор VT1 необходим для усиления сигнала с выхода элемента DD1.2. Без этого транзистора капсюль НА1 звучит негромко. Транзистор VT1 можно заменить на КТ503, КТ940, КТ603, КТ801 с любым буквенным индексом.

Капсюль-излучатель НА1 может быть заменен на аналогичный с встроенным генератором 34 и рабочим током не более 50 мА, например FMQ-2015B, КРХ-1212В и аналогичными.

Благодаря применению капсюля с встроенным генератором узел проявляет интересный эффект: при близком приближении человека к сенсору-антенне Е1 звук капсюля монотонный, а при удалении (или приближении человека, начиная с расстояния 1,5 м до Е1) — капсюль издает стабильный по характеру прерывистый звук в соответствии с изменением уровня потенциала на выходе элемента DD1.2. (Подобный эффект лег в основу первого электронного музыкального инструмента — «Терменвокса».)

Для более полного представления о свойствах емкостного датчика автор рекомендует ознакомиться с материалом .

Если в качестве НА1 применить капсюль со встроенным гене-ратбром ЗЧ, например КРІ-4332-12, то при сравнительно большом удалении человека от сенсора-антенны звук будет напоминать сирену, а при максимальном приближении — прерывистый сигнал.

Некоторым минусом устройства можно считать отсутствие избирательности (системы распознавания «свой/чужой»), так узел будет сигнализировать о приближении к Е1 любого лица, в том числе вышедшего «за хлебом» хозяина квартиры. Основа работы устройства — электрические наводки и изменение емкости максимально полезны при эксплуатации в больших жилых массивах с развитой сетью электрических коммуникаций; очевидно, прибор будет бесполезен в лесу, в поле и везде, где нет электрических коммуникаций.

Кашкаров А. П. 500 схем для радиолюбителей. Электронные датчики.

Датчик движения чаще всего используется для включения освещения, когда вы проходите или находитесь рядом с ним. С его помощью можно хорошо экономить электричество и избавить себя от необходимости щелкать выключателем. Это устройство также используется и в системах сигнализации, для определения нежелательных проникновений. Кроме этого их можно встретить и на производственных линиях, они там нужны для автоматизированного выполнения каких-либо технологических задач. Датчики движения иногда называют датчикам присутствия.

Типы датчиков движения

Датчики движения различают по принципу действия от этого зависит их работа, точность срабатывания и особенности использования. У каждого из них есть сильные и слабые стороны. От конструкции и рода используемого элемента зависит и конечная цена такого датчика.

Датчик движения может быть выполнен в одном корпусе и в разных корпусах (блок управления отдельно от датчика).

Контактные

Самый простой вариант датчика движения - использовать или . Геркон (герметичный контакт) это переключатель который срабатывает при появлении магнитного поля. Суть работы заключается в установки концевого выключателя с нормально-разомкнутыми контактами или геркона на дверь, когда вы её откроете и зайдете в помещение контакты замкнутся, включат реле, а оно включит освещение. Такая схема изображена ниже.

Инфракрасные

Срабатывают от теплового излучения, реагируют на изменение температуры. Когда вы входите в поле зрения такого датчика он срабатывает на тепловое излучение от вашего тела. Недостатком такого способа определения являются ложные срабатывания. Тепловое излучение присуще всему что есть вокруг. Приведем несколько примеров:

1. стоит в помещении с электрообогревателем, который периодически включается и отключается по таймеру или термостату. При включении обогревателя возможны ложные срабатывания. Можно попробовать этого избежать долгой и скрупулезной настройкой чувствительности, а также попыткой направить его так, чтобы в прямой видимости не было обогревателя.

2. При установке на улице возможны срабатывания от порывов тёплого ветра.

В целом эти датчики нормально работают, при этом это самый дешевый вариант. В качестве чувствительного элемента используется PIR-сенсор, он создает электрическое поле пропорционально тепловому излучению.

Но сам по себе сенсор не имеет широкой направленности, поверх него устанавливается линза Френеля.

Правильнее будет сказать - многосегментная линза, или мультилинза. Обратите внимание на окошко такого датчика, оно разбито на секции это и есть сегменты линз, они фокусируют попадающие излучения в узкий пучок и направляют его на чувствительную область датчика. В результате этого на маленькое приемное окошко пироэлектрического сенсора попадают пучки излучений с разных сторон.

Для увеличения эффективности детектирования движения могут устанавливать сдвоенные, или счетвертненные сенсоры или несколько отдельных. Таким образом, расширяется поле зрение прибора.

Исходя из вышесказанного нужно отметить и то, что на датчик не должен попадать свет от лампы, а также в поле его зрения не должно быть ламп накаливания, это также сильный источник ИК-излучения, тогда работа системы в целом будет нестабильной и непредвиденной. ИК-излучения плохо проходят через стекло, поэтому он не сработает, если вы будете идти за окном или стеклянной дверью.

Это самый распространённый вид датчика его можно купить а можно и собрать самому на основе, поэтому рассмотрим его конструкцию подробно.

Как собрать ИК-датчик движения своими руками?

Самый распространенный вариант - это HC-SR501. Его можно купить в магазине радиодеталей, на али-экспресс, часто поставляется в наборах Arduino. Может использоваться как в паре с микроконтроллером, так и самостоятельно. Он представляет собой печатную плату с микросхемой, обвязкой и одним ПИР-сенсором. Последний накрыт линзой, на плате есть два потенциометра, один из них регулирует чувствительность, а второй время которое на выходе датчика присутствует сигнал. При детектировании движения на выходе появляется сигнал и держится установленное время.

Он питается напряжением от 5 до 20 вольт, срабатывает на расстоянии от 3 до 7 метров, а сигнал на выходе держит от 5 до 300 секунд, вы можете продлить этот период, если использовать , микроконтроллер или реле задержки времени. Угол обзора порядка 120 градусов.

На фото изображен датчик в сборе (слева), линзу (справа внизу), обратную сторону платы (справа вверху).

Рассмотрим плату подробнее. На её передней стороне расположен чувствительный элемент. На задней - микросхема, её обвязка, справа два подстроечных резистора, где верхний - время задержки сигнала, а нижний - чувствительность. В нижней правой части джампер для переключения режимов H и L. В режиме L датчик выдает выходной сигнал только она период времени выставленного потенциометром. Режим H выдает сигнал, пока вы находитесь в зоне действия датчика, а когда вы её покидаете сигнал, исчезнет через время заданное верхним потенциометром.

Если вы хотите использовать датчик без микроконтроллеров, тогда соберите эту схему, все элементы подписаны. Схема питается через гасящий конденсатор, напряжение питания ограничено на уровне 12В с помощью стабилитрона. Когда на выходе датчика появляется положительный сигнал реле Р включается через NPN транзистор (например BC547, mje13001-9, КТ815, КТ817 и другие). Можно использовать автомобильное реле или любое другое с катушкой на 12В.

Если вам нужно реализовать какие-то другие функции - можно использовать его в паре с микроконтроллером, например . Ниже представлена схема подключения и программный код.

Ультразвуковые

Излучатель работает на высоких частотах - от 20 кГц до 60 кГц. Отсюда выходит одна неприятность - животные, например собаки, чувствительны к этим частотам, более того они используются для их отпугивания и дрессировки. Такие датчики могут раздражать их и с этим возникают проблемы.

Ультразвуковой датчик движения работает на эффекте Допплера. Излучаемая волна, отражаясь от подвижного объекта, возвращается и принимается приёмником, при этом длина волны (частота) незначительно изменяется. Это детектируется, и датчик выдает сигнал, который используют для управления реле или симмистором и коммутации нагрузки.

Датчик неплохо отрабатывает движения, однако если движения очень медленные - он может не срабатывать. Преимуществом является то, что они не чувствительны к изменениям условий окружающей среды.

Лазерные или фотодатчики

В них есть излучатель (например ИК-светодиод) и приемник (фотодиод аналогичного спектра). Это простой датчик, возможна реализация в двух исполнениях:

1. Излучатель и фотодиод монтируются в проходе (контролируемой зоне) напротив друг друга. Когда вы проходите через него вы заслоняете излучение и оно не достигает приемника, тогда срабатывает датчик и включается реле. Это можно использовать и в системах сигнализации.

2. Излучатель и фотодиод стоят рядом друг с другом, когда вы находитесь в зоне действия датчика излучение отражается от вас и попадает на фотодиод. Это называется также датчиком препятствия, с успехом применяется в робототехнике.

Микроволновый

Состоит также из передатчика и приемника. Первый генерирует сигнал высокой частоты, второй их принимает. Когда вы проходите рядом изменяется частота. Приемник настроен таким образом, что при изменении частоты сигнал усиливается и передается на исполнительный орган, например реле, и происходит включение нагрузки.

Микроволновые датчики движения очень чувствительны, позволяют «увидеть» объект даже за дверью или за стеклом, однако это вызывает и проблемы ложного срабатывания, когда объект находится вне поля предполагаемой видимости.

Это достаточно дорогостоящие датчики, но они реагируют даже на самые незначительные движения.

Подобным образом работают и емкостные приборы. Такая схема изображена ниже.

Как подключить датчик движения?

Можно придумать бесчисленное множество вариантов и схем подключения датчика движения в зависимости от ваших потребностей, иногда нужно чтобы система срабатывала при движении в разных местах, например уличное освещение по пути от дома до ворот и наоборот, в других случаях необходимо принудительное включение или отключение света и т.д. Мы рассмотрим несколько вариантов.

Обычно у датчика движения есть три провода или три клеммы для подсоединения:

1. Приходящая фаза.

2. Фаза, отходящая для питания нагрузки.

Если вам не хватает мощности датчика - используйте промежуточное реле и . Для этого вместо лампочки в нижеуказанных схемах подключаются выводы катушки.

На фото ниже изображены клеммы к которым подсоединяются питающие провода.

Заключение

Использование датчиков движения, как бы это ни звучало, это шаг . Во-первых, это поможет экономить электроэнергию и ресурс ламп. Во-вторых, это избавит от необходимости каждый раз щелкать выключатель. Для освещения на улице при правильной настройки можно сделать так, чтобы свет включался, когда вы подходите к воротам дома.

Если расстояние от ворот до дома 7-10 - можно обойтись и одним датчиком, тогда не придется прокладывать кабель на второй датчик или собирать схему с проходным выключателем.

Как уже было сказано чаще всего встречаются ИК-датчики, их достаточно для простых задач, если вам нужна большая чувствительность или точность - присмотритесь к датчикам других типов.

Здесь же я отдельно вынес такой важный практический вопрос, как подключение индуктивных датчиков с транзисторным выходом, которые в современном промышленном оборудовании – повсеместно. Кроме того, приведены реальные инструкции к датчикам и ссылки на примеры.

Принцип активации (работы) датчиков при этом может быть любым – индуктивные (приближения), оптические (фотоэлектрические), и т.д.

В первой части были описаны возможные варианты выходов датчиков. По подключению датчиков с контактами (релейный выход) проблем возникнуть не должно. А по транзисторным и с подключением к контроллеру не всё так просто.

Схемы подключения датчиков PNP и NPN

Отличие PNP и NPN датчиков в том, что они коммутируют разные полюсы источника питания. PNP (от слова “Positive”) коммутирует положительный выход источника питания, NPN – отрицательный.

Ниже для примера даны схемы подключения датчиков с транзисторным выходом. Нагрузка – как правило, это вход контроллера.


Подписывайтесь! Будет интересно.


Датчика. Нагрузка (Load) постоянно подключена к “минусу” (0V), подача дискретной “1” (+V) коммутируется транзистором. НО или НЗ датчик – зависит от схемы управления (Main circuit)

Датчика. Нагрузка (Load) постоянно подключена к “плюсу” (+V). Здесь активный уровень (дискретный “1”) на выходе датчика – низкий (0V), при этом на нагрузку подается питание через открывшийся транзистор.

Призываю всех не путаться, работа этих схем будет подробно расписана далее.

На схемах ниже показано в принципе то же самое. Акцент уделён на отличия в схемах PNP и NPN выходов.

Схемы подключения NPN и PNP выходов датчиков

На левом рисунке – датчик с выходным транзистором NPN . Коммутируется общий провод, который в данном случае – отрицательный провод источника питания.

Справа – случай с транзистором PNP на выходе. Этот случай – наиболее частый, так как в современной электронике принято отрицательный провод источника питания делать общим, а входы контроллеров и других регистрирующих устройств активировать положительным потенциалом.

Как проверить индуктивный датчик?

Для этого нужно подать на него питание, то есть подключить его в схему. Затем – активировать (инициировать) его. При активации будет загораться индикатор. Но индикация не гарантирует правильной работы индуктивного датчика. Нужно подключить нагрузку, и измерить напряжение на ней, чтобы быть уверенным на 100%.

Замена датчиков

Как я уже писал, есть принципиально 4 вида датчиков с транзисторным выходом, которые подразделяются по внутреннему устройству и схеме включения:

  • PNP NO
  • PNP NC
  • NPN NO
  • NPN NC

Все эти типы датчиков можно заменить друг на друга, т.е. они взаимозаменяемы.

Это реализуется такими способами:

  • Переделка устройства инициации – механически меняется конструкция.
  • Изменение имеющейся схемы включения датчика.
  • Переключение типа выхода датчика (если имеются такие переключатели на корпусе датчика).
  • Перепрограммирование программы – изменение активного уровня данного входа, изменение алгоритма программы.

Ниже приведён пример, как можно заменить датчик PNP на NPN, изменив схему подключения:

PNP-NPN схемы взаимозаменяемости. Слева – исходная схема, справа – переделанная.

Понять работу этих схем поможет осознание того факта, что транзистор – это ключевой элемент, который можно представить обычными контактами реле (примеры – ниже, в обозначениях).

А что там свежего в группе ВК СамЭлектрик.ру ?

Подписывайся, и читай статью дальше:

Итак, схема слева. Предположим, что тип датчика – НО. Тогда (независимо от типа транзистора на выходе), когда датчик не активен, его выходные “контакты” разомкнуты, и ток через них не протекает. Когда датчик активен, контакты замкнуты, со всеми вытекающими последствиями. Точнее, с протекающим током через эти контакты)). Протекающий ток создает падение напряжения на нагрузке.

Внутренняя нагрузка показана пунктиром неспроста. Этот резистор существует, но его наличие не гарантирует стабильную работу датчика, датчик должен быть подключен к входу контроллера или другой нагрузке. Сопротивление этого входа и является основной нагрузкой.

Если внутренней нагрузки в датчике нет, и коллектор “висит в воздухе”, то это называют “схема с открытым коллектором”. Эта схема работает ТОЛЬКО с подключенной нагрузкой.

Так вот, в схеме с PNP выходом при активации напряжение (+V) через открытый транзистор поступает на вход контроллера, и он активизируется. Как того же добиться с выходом NPN?

Бывают ситуации, когда нужного датчика нет под рукой, а станок должен работать “прям щас”.

Смотрим на изменения в схеме справа. Прежде всего, обеспечен режим работы выходного транзистора датчика. Для этого в схему добавлен дополнительный резистор, его сопротивление обычно порядка 5,1 – 10 кОм. Теперь, когда датчик не активен, через дополнительный резистор напряжение (+V) поступает на вход контроллера, и вход контроллера активизируется. Когда датчик активен – на входе контроллера дискретный “0”, поскольку вход контроллера шунтируется открытым NPN транзистором, и почти весь ток дополнительного резистора проходит через этот транзистор.

В данном случае происходит перефазировка работы датчика. Зато датчик работает в режиме, и контроллер получает информацию. В большинстве случаев этого достаточно. Например, в режиме подсчета импульсов – тахометр, или количество заготовок.

Да, не совсем то, что мы хотели, и схемы взаимозаменяемости npn и pnp датчиков не всегда приемлемы.

Как добиться полного функционала? Способ 1 – механически сдвинуть либо переделать металлическую пластинку (активатор). Либо световой промежуток, если речь идёт об оптическом датчике. Способ 2 – перепрограммировать вход контроллера чтобы дискретный “0” был активным состоянием контроллера, а “1” – пассивным. Если под рукой есть ноутбук, то второй способ и быстрее, и проще.

Условное обозначение датчика приближения

На принципиальных схемах индуктивные датчики (датчики приближения) обозначают по разному. Но главное – присутствует квадрат, повёрнутый на 45° и две вертикальные линии в нём. Как на схемах, изображённых ниже.

НО НЗ датчики. Принципиальные схемы.

На верхней схеме – нормально открытый (НО) контакт (условно обозначен PNP транзистор). Вторая схема – нормально закрытый, и третья схема – оба контакта в одном корпусе.

Цветовая маркировка выводов датчиков

Существует стандартная система маркировки датчиков. Все производители в настоящее время придерживаются её.

Однако, нелишне перед монтажом убедиться в правильности подключения, обратившись к руководству (инструкции) по подключению. Кроме того, как правило, цвета проводов указаны на самом датчике, если позволяет его размер.

Вот эта маркировка.

  • Синий (Blue) – Минус питания
  • Коричневый (Brown) – Плюс
  • Чёрный (Black) – Выход
  • Белый (White) – второй выход, или вход управления, надо смотреть инструкцию.

Система обозначений индуктивных датчиков

Тип датчика обозначается цифро-буквенным кодом, в котором зашифрованы основные параметры датчика. Ниже приведена система маркировки популярных датчиков Autonics.

Скачать инструкции и руководства на некоторые типы индуктивных датчиков:
/ Схема включения датчиков по схемам PNP и NPN в программе Splan/ Исходный файл., rar, 2.18 kB, скачан: 2294 раз./

Реальные датчики

Датчики купить проблематично, товар специфический, и в магазинах электрики такие не продают. Как вариант, их можно купить в Китае, на АлиЭкспрессе.

А вот какие я встречаю в своей работе.

Всем спасибо за внимание, жду вопросов по подключению датчиков в комментариях!

Сегодня никого не удивишь различными по назначению и эффективности электронными устройствами превентивного предупреждения, которые оповещают людей или включают охранную сигнализацию задолго до непосредственного контакта нежелательного гостя с охраняемым рубежом (территорией). Многие из таких узлов, описанных в литературе, на мой взгляд, интересны, но усложнены. В противовес им простая электронная схема бесконтактного емкостного датчика (рис.1), собрать которую в силах даже начинающий радиолюбитель. Устройство имеет многочисленные возможности, одну из которых - высокую чувствительность по входу - используют для предупреждения о приближении какого-либо одушевленного объекта (к примеру, человека) к сенсору Е1.
В основе схемы - два элемента микросхемы К561ТЛ1 включенных как инверторы. Эта микросхема имеет в своем составе четыре однотипных элемента с функцией 2И-НЕ с триггера Шмитта с гистерезисом (задержкой) на входе и инверсией по выходу. Функциональное обозначение - петля гистерезиса показывает

Рис. 1. Электрическая схема бесконтактного емкостного датчика в таких элементах внутри их обозначения. Применение К561ТЛ1 в данной схеме оправдано тем, что она (и К561 серия микросхем, в частности) имеет очень малые рабочие токи, высокую помехозащищенность (до 45% от уровня напряжения питания), работает в широком диапазоне питающего напряжения (от 3 до 15 В), имеет защищенность по входу от потенциала статического электричества и кратковременного превышения входных уровней и многие другие преимущества, которые позволяют широко использовать ее в радиолюбительских конструкциях, не требуя каких-либо особых мер предосторожности и защиты.
Кроме того, К561ТЛ1 позволяет включать свои независимые логические элементы параллельно, в качестве буферных элементов, вследствие чего мощность выходного сигнала кратно увеличивается. Триггеры Шмита - это, как правило, бистабильные схемы, способные работать с медленно возрастающими входными сигналами, в том числе с примесью помех, при этом обеспечивающие по выходу крутые фронты импульсов, которые можно передавать в последующие узлы схемы для стыковки с другими ключевыми элементами и микросхемами.
Микросхема К561ТЛ1 (как, впрочем, и К561ТЛ2) может выделять Управляющий сигнал (в том числе цифровой) для других устройств с нечеткого входного импульса. Зарубежный аналог К561ТЛ1 - CD4093B.
Предельное состояние, близкое к низкому логическому уровню. На выходе DD1.1 - высокий уровень, на выходе DD1.2 - опять низкий. Транзистор VT1, выполняющий роль усилителя тока, закрыт. Пьезоэлектрический капсюль НА1 (с внутренним генератором 3Ч) неактивен.
К сенсору Е1 подключена антенна - в ее качестве используют автомобильную телескопическую антенну. При нахождении человека рядом с антенной изменяется емкость между штырем антенны и полом. От этого переключаются элементы DD1.1, DD1.2 в противоположное состояние. Для переключения узла человек среднего роста должен находиться (проходить) рядом с антенной длиной 35 см на расстоянии до 1,5 м.
На выводе 4 микросхемы появляется высокий уровень напряжения, вследствие этого транзистор VT1 открывается и звучит капсюль НА1.
Подбором емкости конденсатора С1 можно изменить режим работы элементов микросхемы. Так, при уменьшении емкости С1 до 82-120 пФ узел работает иначе. Теперь звуковой сигнал звучит, только пока на вход DD1.1 воздействует наводка переменного напряжения - прикосновение человека.
Электрическую схему (рис.1) можно использовать и как основу для триггерного сенсорного узла. Для этого исключают постоянный резистор R1, экранированный провод, а сенсором являются контакты микросхемы 1 и 2.
Последовательно с R1 подключают экранированный провод (кабель РК-50, РК-75, экранированный провод для сигналов 34 - подходят все типы) длиной 1-1,5 м, экран соединяется с общим проводом. Центральный (неэкранированный) провод на конце соединяется со штырем антенны.
При соблюдении указанных рекомендаций, применении указанных в схеме типов и номиналов элементов узел генерирует звуковой сигнал частотой около 1 кГц (зависит от типа капсюля НА1) при приближении человека к штырю антенны на расстояние 1,5-1 м. Триггерного эффекта нет. При отходе человека от антенны звук в капсюле НА1 прекращается.
Эксперимент проводился также с животными - кошкой и собакой: на их приближение к сенсору - антенне - узел не реагирует.Принцип действия в данном устройстве основан на изменении емкости сенсора-антенны Е1 между ней и «землей» (общим проводом, всем тем, что относится к заземляющему контуру, - в данном случае это пол и стены помещения). При приближении человека эта емкость существенно изменяется, что оказывается достаточным для срабатывания микросхемы К561ТЛ1.
Практическое применение узла трудно переоценить. В авторском варианте устройство смонтировано рядом с дверной коробкой многоквартирного жилого дома. Входная дверь - металлическая.
Громкость сигнала 34, излучаемого капсюлем НА1, достаточна для того, чтобы услышать его на закрытой лоджии (она сопоставима с громкостью квартирного звонка).
Источник питания - стабилизированный с напряжением 9-15 В, с хорошей фильтрацией напряжения пульсаций по выходу. Ток потребления ничтожно мал в режиме ожидания (несколько микроампер) и увеличивается до 22-28 мА при активной работе излучателя НА1.Бестрансформаторный источник применять нельзя из-за вероятности поражения электрическим током. Оксидный конденсатор С2 действует как дополнительный фильтр по питанию, его тип К50-35 или аналогичный, на рабочее напряжение не ниже напряжения источника питания.
При эксплуатации узла выявлены интересные особенности. Так, напряжение питания узла влияет на его работу. При увеличении напряжения питания до 15 В в качестве сенсора-антенны используется только обыкновенный многожильный неэкранированный электрический медный провод сечением 1-2 мм длиной 1 м. Никакого экрана и резистора R1 в таком случае не надо. Электрический медный провод подсоединяется непосредственно к выводам 1 и 2 элемента DD1.1. Эффект оказывается тем же.
При изменении фазировки сетевой вилки источника питания узел катастрофически теряет чувствительность и способен работать только как сенсор (реагирует на прикосновение к Е1). Это актуально при любом значении напряжения источника питания в диапазоне 9-15 В. Очевидно, что второе назначение данной схемы - обыкновенный сенсор (или сенсор-триггер).
Эти нюансы следует учитывать при повторении узла. Однако при правильном подключении, описанном здесь, получается важная и стабильная часть охранной сигнализации, обеспечивающей безопасность жилищу, предупреждающей хозяев еще до возникновения нештатной ситуации.
Монтаж элементов осуществляется компактно на плате из стеклотекстолита.
Корпус для устройства любой из диэлектрического (непроводящего) материала. Для контроля включения питания устройство может быть снабжено индикаторным светодиодом, подключенным параллельно источнику питания.


Рис. 2. Фото готового устройства с автомобильной антенной в виде емкостного датчика
Налаживание при точном соблюдении рекомендаций не требуется. Возможно, при других вариантах сенсоров и антенн узел проявит себя в ином качестве. Если экспериментировать с длиной экранирующего кабеля, длиной и площадью сенсора-антенны Е1 и изменением напряжения питания узла, возможно, потребуется скорректировать сопротивление резистора R1 в широких пределах от 0,1 до 100 МОм. Для уменьшения чувствительности узла увеличивают емкость конденсатора С1. Если это не приносит результатов, параллельно С1 включают постоянный резистор сопротивлением 5-10 МОм.
Неполярный конденсатор С1 типа КМ6. Постоянный резистор R2 - МЛТ-0,25. Резистор R1 типа ВС-0,5, ВС-1. Транзистор VT1 необходим для усиления сигнала с выхода элемента DD1.2. Без этого транзистора капсюль НА1 звучит слабо. Транзистор VT1 можно заменить на КТ503, КТ940, КТ603, КТ801 с любым буквенным индексом-
Капсюль-излучатель НА1 может быть заменен на аналогичный с встроенным генератором 34 и рабочим током не более 50 мА, например FMQ-2015B, КРХ-1212В и аналогичными.
Благодаря применению капсюля со встроенным генератором узел проявляет интересный эффект - при близком приближении человека к сенсору-антенне Е1 звук капсюля монотонный, а при удалении (или дальнем приближении человека на расстоянии более 1,5 м) капсюль издает стабильный по характеру, прерывистый звук в соответствии с изменением уровня потенциала на выходе элемента DD1.2.
Если в качестве НА1 применить капсюль со встроенным генератором прерываний 34, например KPI-4332-12, звук будет напоминать сирену при относительно большом расстоянии человека от сенсора-антенны и прерывистый сигнал стабильного характера при максимальном приближении.
Некоторым минусом устройства можно считать отсутствие избирательности «свой/чужой» - так, узел будет сигнализировать о приближении к Е1 любого лица, в том числе вышедшего «за булкой хлеба» хозяина квартиры.
Основа работы узла - электрические наводки и изменение емкости максимально полезны при эксплуатации в больших жилых массивах с развитой сетью электрических коммуникаций. Возможно, что такой прибор будет бесполезен в лесу, в поле и везде, где нет электрических коммуникаций осветительной сети 220 В. Такова особенность устройства.
Экспериментируя с данным узлом и микросхемой К561ТЛ1 (даже в штатном ее включении), можно получить бесценный опыт и реальные, простые в повторении, но оригинальные по сути и функциональным особенностям электронные устройства.

Высоковольтный емкостной датчик (далее датчик) – устройство для снятия формы вторичного напряжения системы зажигания и последующей передачи его на один из входов регистрирующего оборудования.

Датчик состоит из держателя, емкостной пластины, которая гальванически соединена с сигнальным проводом, экранированного кабеля и соответствующего разъема для подключения датчика к входу регистрирующего оборудования.

Из чего следует:

1. Сигнал на выходе датчика будет тем больше чем ближе емкостная пластина к токопроводящей жиле ВВ провода.

2. Влияние электромагнитных наводок с соседних ВВ проводов будет тем меньше чем меньше размер емкостной пластины и чем меньше не экранированный участок сигнального провода.

4. Емкостная связь представляет собой дифференцирующую цепочку (ФВЧ) пропускающую высокочастотные колебания (область пробоя), и не пропускающую низкочастотные колебания (область горения), т.е. форма вторичного напряжения на выходе датчика будет искажена.

Сд – емкость между токопроводящей жилой ВВ провода и емкостной пластиной датчика
Rвх – входное сопротивление регистрирующего оборудования
Свх – входная емкость не учитывается, так как она фактически в данном случае ни на что не влияет

На графике красного цвета изображен исходный сигнал (меандр 1 КГц, скважность 10%, амплитуда 1 В)
На графике синего цвета изображен сигнал, полученный на выходе дифференцирующей цепочки


Сигнал с выхода датчика без использования компенсационной емкости

Для устранения искажения формы вторичного напряжения на выходе датчика, необходимо использовать дополнительную компенсационную емкость, которая с емкостью датчик-жила образует емкостной делитель:

Без учета входного сопротивления регистрирующего оборудования, коэффициент передачи емкостного делителя определяется следующим соотношением: Kп = Сд / (Сд + Ск) . Как видно из соотношения, чем больше значение емкости Ск тем меньше будет значение напряжения на выходе емкостного делителя. Для идеального емкостного делителя без учета входного сопротивления регистрирующего оборудования Ск можно взять сколь угодно малое, при этом форма сигнала на выходе делителя в точности будет соответствовать форме сигнала на его входе.

При учете входного сопротивления соотношение для определения коэффициента передачи становится гораздо объемнее, но зависимость Kп от Ск остается той же. Входное сопротивление регистрирующего оборудования на прямую не влияет на Kп, оно определяет “степень вносимого искажения”.

При увеличении входного сопротивления искажения формы вторичного напряжения значительно уменьшаются. В большинстве случаев входное сопротивления практических все осциллографов используемых для автодиагностики находится в диапазоне 1 МОм, за исключением специализированных входов предназначенных исключительно для подключения ВВ датчиков. По этому при непосредственном подключении датчика к входу осциллографа (без специализированного адаптера) Rвх также можно принять за константу, и ограничится варьированием только Ск.

Примечание!
Подключение датчика к входу осциллографа просто через резистор 10 МОм приведет к увеличению входного сопротивления и соответственно уменьшению искажения формы вторичного напряжения, но при этом примерно в десять раз уменьшиться коэффициент передачи входного тракта канала. Для увеличения входного сопротивления без уменьшения коэффициента передачи необходимо использовать промежуточный буфер (повторитель – простейший адаптер) с высоким входным сопротивлением и низким выходным сопротивлением.
Для текущих Сд (точно не известно) и Rвх (обычно 1 МОм) значение Ск подбирается исходя из компромисса:
1. Чем меньше Ск тем больше амплитуда напряжения на выходе емкостного делителя
2. Чем больше Ск тем меньше степень искажения формы вторичного напряжения

Практически значение Ск возможно увеличивать до тех пор, пока “амплитуда” напряжения на выходе емкостного делителя будет достаточно выделяться на фоне шума.

Местоположение подключения Ск: в начале кабеля (ближе к емкостной пластине) или в конце кабеля (ближе к входу регистрирующего оборудования) – практически не влияет на форму и амплитуду сигнала с выхода датчика.

На графике красного цвета изображен сигнал, полученный с ВВ датчика и Ск = 3.3 нФ подключенной на входе осциллографа, на графике синего цвета изображен сигнал, полученный с ВВ датчика и Ск = 3.3 нФ подключенной непосредственно возле емкостной пластины. Как видно форма сигналов практически одинакова, а амплитуда различается в пределах разброса номинала используемых емкостей +/- 20%.

Примеры осциллограмм вторичного напряжения снятого одним и тем же датчиком с емкостной пластиной в виде круга диаметром ~10 мм при разных значениях Ск, на стенде с DIS катушки 2112-3705010 (форма вторичного напряжения несколько отличается от привычной из-за разряда на открытом воздухе).


Ск = 470 пФ. Область горения значительно проседает, но амплитуда пробоя достигает 5 Вольт.


Ск = 1.8 нФ. Область горения также значительно проседает, амплитуда пробоя уменьшилась до 2 Вольт.


Ск = 3.3 нФ. Область горения не много проседает, амплитуда пробоя уменьшилась до 1 Вольта.


Ск = 10 нФ. Область горения практически не проседает, но и амплитуда пробоя уменьшилась до 0.4 Вольт.

Как видно при Ск = 10 нФ форма вторичного напряжения практически не искажена, а шум довольно не значительный.

Для сравнения приведены осциллограммы вторичного напряжения снятые с одного и того же ВВ провода без использования адаптера и с использованием специализированного адаптера зажигания.

На графике красного цвета изображен сигнал, полученный с ВВ датчика (Ск = 10 нФ) непосредственно подключенного к входу осциллографа. На графике синего цвета изображен сигнал, полученный с адаптера Постоловского, к которому подключен “родной” ВВ датчик Постоловского.

Как видно форма обеих сигналов практически совпадает, но с адаптера содержащего промежуточные усилители, сигнал имеет в 3 раза большую амплитуду.

Примечание!
Все адаптеры, использующие емкостные датчики искажают форму вторичного напряжения, но при высоком входном сопротивлении и достаточной Ск, вносимое искажение крайне не значительно.

В простейшем случае емкостной съемник это любой металлический предмет расположенный рядом с ВВ проводом, т.е. в роли емкостной пластины могут выступать зажим типа “крокодил”, фольга намотаня на ВВ провод, монетка и т.д.

Практически в качестве высоковольтного емкостного датчика рекомендуется использовать конструкцию, которая удовлетворяет следующим требованием:
1. Высокая степень защиты от пробоя
2. Малая подверженность электромагнитным наводкам от соседних ВВ проводов
3. Удобное конструктивное исполнение для быстрого подключения датчика к ВВ проводу

Примеры конструкции ВВ емкостных датчиков:


Жестяная пластинка 20x70 мм, выгибается, так что бы плотно прижиматься к ВВ проводу.


По сути, та же пластина только в изоляции.


ВВ датчик типа “прищепка”.


ВВ датчик аналогичный одной из конструкций Бош (поставляется по цене $7 / шт).

В качестве примера рассмотрим процесс изготовления ВВ датчика на основании выше приведенной конструкции компании Бош.

Для изготовления датчика необходимо:

1. Выше рассмотренная ручка ВВ датчика.

2. Экранированный кабель 1-3 м. Желательно использовать мягкий микрофонный кабель, так как при эксплуатации он намного удобнее жесткого коаксиального кабеля. Волновое сопротивление кабеля 50 или 75 Ом, значения не имеет, так как все исследуемые сигналы находятся в области низких частот.

3. Разъемы для подключения датчика к осциллографу или адаптеру зажигания BNC-FJ / BNCP / FC-022 Переходник гнездо F / BNC под F-ку (разъем один и тот же только у разных производителей / продавцов он по-разному называется).

BNC-M / FC-001 / RG58 / F разъем

Примечание!
При покупке F разъема и кабеля обращайте внимание на соответствие диаметра кабеля к диметру разъема для накрутки на кабель, иначе либо придется срезать часть изоляции кабеля для уменьшения его диаметра, либо наматывать ленту на кабель для увеличения его диаметра.
4. Сальник / гермоввод / кабельный ввод PG-7 с дюймовой резьбой

5. Емкостная пластина “пятачок” диаметром 9-10 мм

“Пятачок” возможно либо вырезать из жести, либо использовать специальный пробойник (лучше всего использовать пробойник на 8 мм, после развальцовки получится “пятачок” диаметром чуть больше 9 мм):

Также в качестве “пяточка” возможно, использовать подходящие по диаметру канцелярские кнопки.

6. Компенсационная емкость – не полярный (лучше керамический) конденсатор номиналом от 2.2 нФ до 10 нФ на напряжение 50 Вольт (если использовать конденсатор на 1 КВ то в случае пробоя ВВ провода он все равно сгорит). Возможно использовать как выводные конденсаторы так и планарные в корпусе 1206 или 0805.

Порядок изготовления:

1. Удалить изоляцию с экранированного кабеля до оплетки, на участке 12-13 мм. Часть оплетки под снятой изоляцией вывернуть наружу и равномерно расположить вдоль кабеля. С сигнального провода снять изоляцию на участке 10-11 мм и залудить его.

2. Накрутить на кабель F разъем, так что бы он плотно держался на кабеле и хорошо контактировал с частью вывернутой оплетки. При этом сигнальный провод должен выступать на достаточную длину из F разъема для надежного контакта с центральным стержнем разъема BNC-FJ.

3. Накрутить разъем BNC-FJ на F разъем. После чего проверить наличие контакта (прозвонить тестером) между сигнальным проводом и центральным стержнем разъема BNC-FJ, между оплеткой кабеля и экраном разъема BNC-FJ и отсутствие контакта между сигнальным проводом и оплеткой кабеля.

4. Если есть сальник PG-7 то предварительно надеть его на кабель открутив с него гайку.

5. Удалить изоляцию и оплетку с противоположного конца кабеля, на участке 3-5 мм. С сигнального провода снять изоляцию на участке 2-3 мм. Припаять к залуженному сигнальному проводу емкостную пластину.

При необходимости припаять компенсационную емкость между сигнальным проводом и оплеткой.

6. Обмотать участок сигнального провода и припаеную компенсационную емкость изолентой, так что бы емкостная пластина не болталась и была поджата краем изоленты. После чего емкостную пластину обильно смазывать солидолом.

Солидол “улучшает” диэлектрическую проницаемость и устраняет скачки области горения.

На графике красного цвета изображен сигнал, полученный с ВВ датчика (Ск = 3.3 нФ) без солидола. На графике синего цвета изображен сигнал, полученный с ВВ датчика (Ск = 3.3 нФ) с использованием солидола. Без использования солидола область горения иногда “подскакивает” на 20-30%.

7. Надеть ручку ВВ датчика так, что бы емкостная пластина упиралась в дно колпачка датчика. После чего зажать кабель либо с помощью сальника PG-7 либо закрепить изолентой (при этом с датчиком нужно обращаться крайне осторожно, что бы случайно не вырвать кабель из ручки датчика).

В результате должен получится высоковольтный емкостной датчик, который возможно непосредственно подключать к одному из аналоговых (с наличием Ск) или к логическому (без Ск) входов осциллографа.