Цезий 137 период распада. Радиотоксикология цезия. Где больше всего плутония выпало после Чернобыльской аварии

Це́зий-137 , известен также как радиоце́зий - радиоактивный нуклид химического элемента цезия с атомным номером 55 и массовым числом 137. Образуется преимущественно при делении ядер в ядерных реакторах и ядерном оружии .

Цезий-137 - один из главных компонентов радиоактивного загрязнения биосферы. Содержится в радиоактивных выпадениях, радиоактивных отходах, сбросах заводов, перерабатывающих отходы атомных электростанций. Интенсивно сорбируется почвой и донными отложениями; в воде находится преимущественно в виде ионов. Содержится в растениях и организме животных и человека. Коэффициент накопления 137 Cs наиболее высок у пресноводных водорослей и арктических наземных растений, особенно лишайников . В организме животных 137 Cs накапливается главным образом в мышцах и печени. Наибольший коэффициент накопления его отмечен у северных оленей и североамериканских водоплавающих птиц. Накапливается в грибах, ряд которых (маслята , моховики , свинушка , горькушка , польский гриб) считается «аккумуляторами» радиоцезия .

Образование и распад

Цезий-137 является дочерним продуктом β − -распада нуклида 137 Xe (период полураспада составляет 3,818(13) мин):

\mathrm{{}^1{}^{37}_{54}Xe} \rightarrow \mathrm{{}^1{}^{37}_{55}Cs} + e^- + \bar{\nu}_e. \mathrm{{}^1{}^{37}_{55}Cs}\rightarrow\mathrm{{}^1{}^{37}_{56}Ba}+ e^- + \bar{\nu}_e.

Цезий-137 в окружающей среде

Выброс цезия-137 в окружающую среду происходит в основном в результате ядерных испытаний и аварий на предприятиях атомной энергетики .

Ядерные испытания

Радиационные аварии

  • В целях глубинного зондирования земной коры по заказу министерства геологии произведён подземный ядерный взрыв 19 сентября 1971 г. около д. Галкино в Ивановской области. На 18 минуте после взрыва в метре от скважины с зарядом образовался фонтан из воды и грязи. В настоящее время мощность излучения составляет порядка 3 миллирентген в час, изотопы цезий-137 и стронций-90 продолжают выходить на поверхность.

Локальные заражения

Известны случаи загрязнения внешней среды в результате небрежного хранения источников цезия-137 для медицинских и технологических целей. Наиболее известным в этом отношении является инцидент в Гоянии , когда мародёрами из заброшенной больницы была похищена деталь из установки для радиотерапии, содержащая цезий-137. В течение более чем двух недель с порошкообразным цезием контактировали все новые люди, и никто из них не знал о связанной с ним опасности. Радиоактивному заражению подверглись приблизительно 250 человек, четверо из них умерли.

Биологическое действие

Внутрь живых организмов цезий-137 в основном проникает через органы дыхания и пищеварения. Хорошей защитной функцией обладает кожа (через неповреждённую поверхность кожи проникает только 0,007 % нанесённого препарата цезия, через обожжённую - 20 %; при нанесении препарата цезия на рану всасывание 50 % препарата наблюдается в течение первых 10 мин, 90 % всасывается только через 3 часа). Около 80 % попавшего в организм цезия накапливается в мышцах, 8 % - в скелете, оставшиеся 12 % распределяются равномерно по другим тканям .

Накопление цезия в органах и тканях происходит до определённого предела (при условии его постоянного поступления), при этом интенсивная фаза накопления сменяется равновесным состоянием, когда содержание цезия в организме остаётся постоянным. Время достижения равновесного состояния зависит от возраста и вида животных. Равновесное состояние у сельскохозяйственных животных наступает примерно через 10-30 дней, у человека приблизительно через 430 суток .

Цезий-137 выводится в основном через почки и кишечник . Через месяц после прекращения поступления цезия из организма выводится примерно 80 % введённого количества, однако при этом следует отметить, что в процессе выведения значительные количества цезия повторно всасываются в кровь в нижних отделах кишечника .

Биологический период полувыведения накопленного цезия-137 для человека принято считать равным 70 суткам (согласно данным Международной комиссии по радиологической защите) . Тем не менее, скорость выведения цезия зависит от многих факторов - физиологического состояния, питания и др. (например, приводятся данные о том, что период полувыведения для пяти облучённых человек существенно различался и составлял 124, 61, 54, 36 и 36 суток) .

При равномерном распределении цезия-137 в организме человека с удельной активностью 1 Бк/кг мощность поглощённой дозы , по данным различных авторов, варьирует от 2,14 до 3,16 мкГр/год .

При внешнем и внутреннем облучении биологическая эффективность цезия-137 практически одинакова (при сопоставимых поглощённых дозах). Вследствие относительно равномерного распределения этого нуклида в организме органы и ткани облучаются равномерно. Этому также способствует высокая проникающая способность гамма-излучения нуклида 137 Ba m , образующегося при распаде цезия-137: длина пробега гамма-квантов в мягких тканях человека достигает 12 см .

Развитие радиационных поражений у человека можно ожидать при поглощении дозы примерно в 2 Гр и более. Симптомы во многом схожи с острой лучевой болезнью при гамма-облучении: угнетённое состояние и слабость, диарея , снижение массы тела, внутренние кровоизлияния. Характерны типичные для острой лучевой болезни изменения в картине крови . Уровням поступления в 148, 370 и 740 МБк соответствуют лёгкая, средняя и тяжёлая степени поражения, однако лучевая реакция отмечается уже при единицах МБк .

Помощь при радиационном поражении цезием-137 должна быть направлена на выведение нуклида из организма и включает в себя дезактивацию кожных покровов, промывание желудка, назначение различных сорбентов (например, сернокислого бария , альгината натрия , полисурмина), а также рвотных, слабительных и мочегонных средств. Эффективным средством для уменьшения всасывания цезия в кишечнике является сорбент ферроцианид , который связывает нуклид в неусваиваемую форму. Кроме того, для ускорения выведения нуклида стимулируют естественные выделительные процессы, используют различные комплексообразователи (ДТПА , ЭДТА и др.) .

Получение

Из растворов, полученных при переработке радиоактивных отходов ядерных реакторов, 137 Cs извлекается методами соосаждения с гексацианоферратами железа, никеля, цинка или фторовольфраматом аммония. Используют также ионный обмен и экстракцию .

Применение

См. также

Напишите отзыв о статье "Цезий-137"

Ссылки

Примечания

  1. G. Audi, A.H. Wapstra, and C. Thibault (2003). «». Nuclear Physics A 729 : 337-676. DOI :10.1016/j.nuclphysa.2003.11.003 . Bibcode : .
  2. G. Audi, O. Bersillon, J. Blachot and A. H. Wapstra (2003). «». Nuclear Physics A 729 : 3–128. DOI :10.1016/j.nuclphysa.2003.11.001 . Bibcode : .
  3. А. Г. Шишкин. (2003). - Радиоэкологические исследования грибов и дикорастущих ягод. Проверено 27 июля 2009. .
  4. Василенко И. Я. // Природа. - 1999. - № 3 . - С. 70-76 .
  5. . - 3 изд. - М .: Издательство «Наука», 1983. - С. 91-100. - 573 с. - 50 000 экз.

Отрывок, характеризующий Цезий-137

– Очень рад вас видеть, князь, – сказал он. – Минутку… обратился он к Магницкому, прерывая его рассказ. – У нас нынче уговор: обед удовольствия, и ни слова про дела. – И он опять обратился к рассказчику, и опять засмеялся.
Князь Андрей с удивлением и грустью разочарования слушал его смех и смотрел на смеющегося Сперанского. Это был не Сперанский, а другой человек, казалось князю Андрею. Всё, что прежде таинственно и привлекательно представлялось князю Андрею в Сперанском, вдруг стало ему ясно и непривлекательно.
За столом разговор ни на мгновение не умолкал и состоял как будто бы из собрания смешных анекдотов. Еще Магницкий не успел докончить своего рассказа, как уж кто то другой заявил свою готовность рассказать что то, что было еще смешнее. Анекдоты большею частью касались ежели не самого служебного мира, то лиц служебных. Казалось, что в этом обществе так окончательно было решено ничтожество этих лиц, что единственное отношение к ним могло быть только добродушно комическое. Сперанский рассказал, как на совете сегодняшнего утра на вопрос у глухого сановника о его мнении, сановник этот отвечал, что он того же мнения. Жерве рассказал целое дело о ревизии, замечательное по бессмыслице всех действующих лиц. Столыпин заикаясь вмешался в разговор и с горячностью начал говорить о злоупотреблениях прежнего порядка вещей, угрожая придать разговору серьезный характер. Магницкий стал трунить над горячностью Столыпина, Жерве вставил шутку и разговор принял опять прежнее, веселое направление.
Очевидно, Сперанский после трудов любил отдохнуть и повеселиться в приятельском кружке, и все его гости, понимая его желание, старались веселить его и сами веселиться. Но веселье это казалось князю Андрею тяжелым и невеселым. Тонкий звук голоса Сперанского неприятно поражал его, и неумолкавший смех своей фальшивой нотой почему то оскорблял чувство князя Андрея. Князь Андрей не смеялся и боялся, что он будет тяжел для этого общества. Но никто не замечал его несоответственности общему настроению. Всем было, казалось, очень весело.
Он несколько раз желал вступить в разговор, но всякий раз его слово выбрасывалось вон, как пробка из воды; и он не мог шутить с ними вместе.
Ничего не было дурного или неуместного в том, что они говорили, всё было остроумно и могло бы быть смешно; но чего то, того самого, что составляет соль веселья, не только не было, но они и не знали, что оно бывает.
После обеда дочь Сперанского с своей гувернанткой встали. Сперанский приласкал дочь своей белой рукой, и поцеловал ее. И этот жест показался неестественным князю Андрею.
Мужчины, по английски, остались за столом и за портвейном. В середине начавшегося разговора об испанских делах Наполеона, одобряя которые, все были одного и того же мнения, князь Андрей стал противоречить им. Сперанский улыбнулся и, очевидно желая отклонить разговор от принятого направления, рассказал анекдот, не имеющий отношения к разговору. На несколько мгновений все замолкли.
Посидев за столом, Сперанский закупорил бутылку с вином и сказав: «нынче хорошее винцо в сапожках ходит», отдал слуге и встал. Все встали и также шумно разговаривая пошли в гостиную. Сперанскому подали два конверта, привезенные курьером. Он взял их и прошел в кабинет. Как только он вышел, общее веселье замолкло и гости рассудительно и тихо стали переговариваться друг с другом.
– Ну, теперь декламация! – сказал Сперанский, выходя из кабинета. – Удивительный талант! – обратился он к князю Андрею. Магницкий тотчас же стал в позу и начал говорить французские шутливые стихи, сочиненные им на некоторых известных лиц Петербурга, и несколько раз был прерываем аплодисментами. Князь Андрей, по окончании стихов, подошел к Сперанскому, прощаясь с ним.
– Куда вы так рано? – сказал Сперанский.
– Я обещал на вечер…
Они помолчали. Князь Андрей смотрел близко в эти зеркальные, непропускающие к себе глаза и ему стало смешно, как он мог ждать чего нибудь от Сперанского и от всей своей деятельности, связанной с ним, и как мог он приписывать важность тому, что делал Сперанский. Этот аккуратный, невеселый смех долго не переставал звучать в ушах князя Андрея после того, как он уехал от Сперанского.
Вернувшись домой, князь Андрей стал вспоминать свою петербургскую жизнь за эти четыре месяца, как будто что то новое. Он вспоминал свои хлопоты, искательства, историю своего проекта военного устава, который был принят к сведению и о котором старались умолчать единственно потому, что другая работа, очень дурная, была уже сделана и представлена государю; вспомнил о заседаниях комитета, членом которого был Берг; вспомнил, как в этих заседаниях старательно и продолжительно обсуживалось всё касающееся формы и процесса заседаний комитета, и как старательно и кратко обходилось всё что касалось сущности дела. Он вспомнил о своей законодательной работе, о том, как он озабоченно переводил на русский язык статьи римского и французского свода, и ему стало совестно за себя. Потом он живо представил себе Богучарово, свои занятия в деревне, свою поездку в Рязань, вспомнил мужиков, Дрона старосту, и приложив к ним права лиц, которые он распределял по параграфам, ему стало удивительно, как он мог так долго заниматься такой праздной работой.

На другой день князь Андрей поехал с визитами в некоторые дома, где он еще не был, и в том числе к Ростовым, с которыми он возобновил знакомство на последнем бале. Кроме законов учтивости, по которым ему нужно было быть у Ростовых, князю Андрею хотелось видеть дома эту особенную, оживленную девушку, которая оставила ему приятное воспоминание.
Наташа одна из первых встретила его. Она была в домашнем синем платье, в котором она показалась князю Андрею еще лучше, чем в бальном. Она и всё семейство Ростовых приняли князя Андрея, как старого друга, просто и радушно. Всё семейство, которое строго судил прежде князь Андрей, теперь показалось ему составленным из прекрасных, простых и добрых людей. Гостеприимство и добродушие старого графа, особенно мило поразительное в Петербурге, было таково, что князь Андрей не мог отказаться от обеда. «Да, это добрые, славные люди, думал Болконский, разумеется, не понимающие ни на волос того сокровища, которое они имеют в Наташе; но добрые люди, которые составляют наилучший фон для того, чтобы на нем отделялась эта особенно поэтическая, переполненная жизни, прелестная девушка!»
Князь Андрей чувствовал в Наташе присутствие совершенно чуждого для него, особенного мира, преисполненного каких то неизвестных ему радостей, того чуждого мира, который еще тогда, в отрадненской аллее и на окне, в лунную ночь, так дразнил его. Теперь этот мир уже более не дразнил его, не был чуждый мир; но он сам, вступив в него, находил в нем новое для себя наслаждение.
После обеда Наташа, по просьбе князя Андрея, пошла к клавикордам и стала петь. Князь Андрей стоял у окна, разговаривая с дамами, и слушал ее. В середине фразы князь Андрей замолчал и почувствовал неожиданно, что к его горлу подступают слезы, возможность которых он не знал за собой. Он посмотрел на поющую Наташу, и в душе его произошло что то новое и счастливое. Он был счастлив и ему вместе с тем было грустно. Ему решительно не об чем было плакать, но он готов был плакать. О чем? О прежней любви? О маленькой княгине? О своих разочарованиях?… О своих надеждах на будущее?… Да и нет. Главное, о чем ему хотелось плакать, была вдруг живо сознанная им страшная противуположность между чем то бесконечно великим и неопределимым, бывшим в нем, и чем то узким и телесным, чем он был сам и даже была она. Эта противуположность томила и радовала его во время ее пения.
Только что Наташа кончила петь, она подошла к нему и спросила его, как ему нравится ее голос? Она спросила это и смутилась уже после того, как она это сказала, поняв, что этого не надо было спрашивать. Он улыбнулся, глядя на нее, и сказал, что ему нравится ее пение так же, как и всё, что она делает.
Князь Андрей поздно вечером уехал от Ростовых. Он лег спать по привычке ложиться, но увидал скоро, что он не может спать. Он то, зажжа свечку, сидел в постели, то вставал, то опять ложился, нисколько не тяготясь бессонницей: так радостно и ново ему было на душе, как будто он из душной комнаты вышел на вольный свет Божий. Ему и в голову не приходило, чтобы он был влюблен в Ростову; он не думал о ней; он только воображал ее себе, и вследствие этого вся жизнь его представлялась ему в новом свете. «Из чего я бьюсь, из чего я хлопочу в этой узкой, замкнутой рамке, когда жизнь, вся жизнь со всеми ее радостями открыта мне?» говорил он себе. И он в первый раз после долгого времени стал делать счастливые планы на будущее. Он решил сам собою, что ему надо заняться воспитанием своего сына, найдя ему воспитателя и поручив ему; потом надо выйти в отставку и ехать за границу, видеть Англию, Швейцарию, Италию. «Мне надо пользоваться своей свободой, пока так много в себе чувствую силы и молодости, говорил он сам себе. Пьер был прав, говоря, что надо верить в возможность счастия, чтобы быть счастливым, и я теперь верю в него. Оставим мертвым хоронить мертвых, а пока жив, надо жить и быть счастливым», думал он.

В одно утро полковник Адольф Берг, которого Пьер знал, как знал всех в Москве и Петербурге, в чистеньком с иголочки мундире, с припомаженными наперед височками, как носил государь Александр Павлович, приехал к нему.
– Я сейчас был у графини, вашей супруги, и был так несчастлив, что моя просьба не могла быть исполнена; надеюсь, что у вас, граф, я буду счастливее, – сказал он, улыбаясь.
– Что вам угодно, полковник? Я к вашим услугам.
– Я теперь, граф, уж совершенно устроился на новой квартире, – сообщил Берг, очевидно зная, что это слышать не могло не быть приятно; – и потому желал сделать так, маленький вечерок для моих и моей супруги знакомых. (Он еще приятнее улыбнулся.) Я хотел просить графиню и вас сделать мне честь пожаловать к нам на чашку чая и… на ужин.
– Только графиня Елена Васильевна, сочтя для себя унизительным общество каких то Бергов, могла иметь жестокость отказаться от такого приглашения. – Берг так ясно объяснил, почему он желает собрать у себя небольшое и хорошее общество, и почему это ему будет приятно, и почему он для карт и для чего нибудь дурного жалеет деньги, но для хорошего общества готов и понести расходы, что Пьер не мог отказаться и обещался быть.
– Только не поздно, граф, ежели смею просить, так без 10 ти минут в восемь, смею просить. Партию составим, генерал наш будет. Он очень добр ко мне. Поужинаем, граф. Так сделайте одолжение.
Противно своей привычке опаздывать, Пьер в этот день вместо восьми без 10 ти минут, приехал к Бергам в восемь часов без четверти.
Берги, припася, что нужно было для вечера, уже готовы были к приему гостей.
В новом, чистом, светлом, убранном бюстиками и картинками и новой мебелью, кабинете сидел Берг с женою. Берг, в новеньком, застегнутом мундире сидел возле жены, объясняя ей, что всегда можно и должно иметь знакомства людей, которые выше себя, потому что тогда только есть приятность от знакомств. – «Переймешь что нибудь, можешь попросить о чем нибудь. Вот посмотри, как я жил с первых чинов (Берг жизнь свою считал не годами, а высочайшими наградами). Мои товарищи теперь еще ничто, а я на ваканции полкового командира, я имею счастье быть вашим мужем (он встал и поцеловал руку Веры, но по пути к ней отогнул угол заворотившегося ковра). И чем я приобрел всё это? Главное умением выбирать свои знакомства. Само собой разумеется, что надо быть добродетельным и аккуратным».
Берг улыбнулся с сознанием своего превосходства над слабой женщиной и замолчал, подумав, что всё таки эта милая жена его есть слабая женщина, которая не может постигнуть всего того, что составляет достоинство мужчины, – ein Mann zu sein [быть мужчиной]. Вера в то же время также улыбнулась с сознанием своего превосходства над добродетельным, хорошим мужем, но который всё таки ошибочно, как и все мужчины, по понятию Веры, понимал жизнь. Берг, судя по своей жене, считал всех женщин слабыми и глупыми. Вера, судя по одному своему мужу и распространяя это замечание, полагала, что все мужчины приписывают только себе разум, а вместе с тем ничего не понимают, горды и эгоисты.

Цезий (лат. caesium – Cs, химический элемент I группы Периодической системы Менделеева, атомный номер 55, атомная масса 132,9054. Назван от латинскогоcaesius – голубой (открыт по ярко-синим спектральным линиям). Серебристо-белый металл из группы щелочных; легкоплавкий, мягкий, как воск; плотность 1,904 г/см 3 и имеет уд. вес 1,88 (при 15ºС), Т пл - 28,4ºС. На воздухе воспламеняется, с водой реагирует со взрывом. Основной минерал – поллуцит.

Известно 34 изотопа цезия с массовыми числами 114-148, из них только один (133 Cs) стабильный, остальные – радиоактивны. Изотопная распространенность цезия-133 в природе составляет приблизительно 100%. 133 Cs относится к рассеянным элементам. В незначительных количествах он содержится практически во всех объектах внешней среды. Кларковое (среднее) содержание нуклида в земной коре - 3,7∙10 -4 %, в почве – 5∙10 -5 %. Цезий – постоянный микроэлемент растительных и животных организмов: в живой фитомассе содержится в количестве 6∙10 -6 %, в организме человека – примерно 4 г. При равномерном распределении цезия-137 в организме человека с удельной активностью 1 Бк/кг мощность поглащенной дозы, по данным различных авторов, варьирует от 2,14 до 3,16 мкГр/год .

В природе этот серебристо-белый щелочной металл встречается в виде стабильного изотопа Cs-133. Это редкий элемент со средним содержанием в земной коре 3,7∙10 -4 %. Обычный, природный цезий и его соединения не радиоактивны . Радиоактивен только искусственно получаемый изотоп 137 Cs. Долгоживущий радиоактивный изотоп цезия 137 Cs образуется при делении ядер 235 U и 239 Pu с выходом около 7%. При радиоактивном распаде 137 Cs испускает электроны с максимальной энергией 1173 кэВ и превращается в короткоживущий γ-излучающий нуклид 137m Ba (табл. 18). Обладает наивысшей среди щелочных металлов химической активностью, хранить его можно только в запаянных вакуумированных ампулах.

Таблица 18
Основные характеристики цезия-137

Металлический цезий применяют в фотоэлементах и фотоумножителях при изготовлении фотокатодов и как геттер в люминесцентных трубках. Пары цезия – рабочее тело в МГД-генераторах, газовых лазерах. Соединения цезия используют в оптике и приборах ночного видения.



В продуктах ядерной реакции деления имеются значительные количества разложенных радионуклидов цезия, среди которых наиболее опасен 137 Cs . Источником загрязнения могут быть и радиохимические заводы. Выброс цезия–137 в окружающую среду происходит в основном в результате ядерных испытаний и аварий на предприятиях атомной энергетики. К началу 1981 г. суммарная активность поступившего в окружающую среду 137 Cs достигла 960 ПБк. Плотность загрязнения в Северном и Южном полушариях и в среднем на земном шаре составляла соответственно 3.42; 0.86 и 3.14 кБк/м 2 , а на территории бывшего СССР в среднем – 3,4 кБк/м 2 .

При аварии на Южном Урале в 1957 г. произошёл тепловой взрыв хранилища радиоактивных отходов, и в атмосферу поступили радионуклиды с суммарной активностью 74 ПБк, в том числе 0,2 ПБк 137 Cs. При пожаре на РХЗ в Уиндскейле в Великобритании в 1957 г. произошёл выброс 12 ПБк радионуклидов, из них 46 ТБк 137 Cs. Технологический сброс радиоактивных отходов предприятия «Маяк» на Южном Урале в р. Течу в 1950 г. составил 102 ПБк, в том числе 137 Cs 12,4 ПБк. Ветровой вынос радионуклидов из поймы оз. Карачай на Южном Урале в 1967 г. составил 30 ТБк. На долю 137 Cs пришлось 0,4 ТБк.

Настоящей катастрофой стала в 1986 г. авария на Чернобыльской атомной электростанции (ЧАЭС): из разрушенного реактора было выброшено 1850 ПБк радионуклидов, при этом на долю радиоактивного цезия пришлось 270 ПБк. Распространение радионуклидов приняло планетарные масштабы. На Украине, в Белоруссии и Центральном районе Российской Федерации выпало более половины от общего количества радионуклидов, осевших на территории СНГ. Известны случаи загрязнения внешней среды в результате небрежного хранения источников радиоактивного цезия для медицинских и технологических целей.



Цезий-137 используется в гамма-дефектоскопии, измерительной технике, для радиационной стерилизации пищевых продуктов, медицинских препаратов и лекарств, в радиотерапии для лечения злокачественных опухолей. Также цезий-137 используется в производстве радиоизотопных источников тока, где он применяется в виде хлорида цезия (плотность 3,9 г/см 3 , энерговыделение около 1,27 Вт/ см 3 ).

Цезий-137 используется в датчиках предельных уровней сыпучих веществ в непрозрачных бункерах. Цезий-137 имеет определенные преимущества перед радиоактивным кобальтом-60: более длительный период полураспада и менее жесткое гамма-излучение. В связи с этим приборы на основе 137 Cs долговечнее, а защита от излучения менее громоздка. Однако, эти преимущества становятся реальными лишь при отсутствии примеси 137 Cs с более коротким периодом полураспада и более жестким гамма-излучением .

Широкое распространение получил в качестве источника γ-излучения. В медицине цезиевые источники, наряду с радиевыми, применяются в терапевтических γ-аппаратах и устройствах для внутритканевой и полостной гамма-терапии. С 1967 г. явление перехода между двумя сверхтонкими уровнями основного состояния атома цезия-137 используется для определения одной из основных единиц измерения времени – секунды.

Радиоцезий 137 Cs исключительно техногенный радионуклид, его наличие в изучаемой среде связано с испытаниями ядерного оружия или с использованием ядерных технологий. 137 Cs – β-γ-излучающий радиоизотоп цезия, один из главных компонентов техногенного радиоактивного загрязнения биосферы. Образуется в результате ядерных реакций деления. Содержится в радиоактивных выпадениях, сбросах, отходах радиохимических заводов. ОА 137 Cs в питьевой воде ограничивается уровнями 11Бк/дм 3 или 8 Бк/дм 3 .

Геохимической особенностью 137 Cs является его способность очень прочно задерживаться природными сорбентами. Вследствие этого при поступлении в ОПС его активность быстро уменьшается по мере удаления от источника загрязнения. Природные воды сравнительно быстро самоочищаются за счет поглощения 137 Cs взвесями и донными осадками .

Цезий может в значительных количествах накапливаться в сельскохозяйственных растениях, и, в частности, в семенах. Наиболее интенсивно поступает из водной среды и с высокой скоростью передвигается по растению. Внесение в почву калийных удобрений и известкование значительно снижают поглощение цезия растениями, и тем сильнее, чем выше доля калия .

Коэффициент накопления особенно высок у пресноводных водорослей и арктических наземных растений (особенно, лишайников), из животного мира – у северных оленей через ягель, которым они питаются. Внутрь живых организмов цезий-137 в основном проникает через органы дыхания и пищеварения. Этот нуклид поступает в основном с пищей в количестве 10 мкг/сут. Выводится из организма преимущественно с мочой (в среднем 9 мкг/сут). Цезий – постоянный химический микрокомпонент организма растений и животных. Главный накопитель цезия в организме млекопитающих – мышцы, сердце, печень. Около 80 % попавшего в организм цезия накапливается в мышцах, 8 % - в скелете, оставшиеся 12 % распределяются равномерно по другим тканям.

Цезий-137 выводится в основном через почки и кишечник. Биологический период полувыведения накопленного цезия-137 для человека принято считать равным 70 суткам (согласно данным Международной комиссии по радиологической защите). В процессе выведения значительные количества цезия повторно всасываются в кровь в нижних отделах кишечника. Эффективным средством для уменьшения всасывания цезия в кишечнике является сорбент ферроцианид, который связывает нуклид в неусваиваемую форму. Кроме того, для ускорения выведения нуклида стимулируют естественные выделительные процессы, используют различные комплексообразователи.

Развитие радиационных поражений у человека можно ожидать при поглощении дозы примерно в 2 Гр и более. Дозам в 148, 170 и 740 МБк соответствуют лёгкая, средняя и тяжёлая степени поражения, однако лучевая реакция отмечается уже при единицах МБк.

137 Cs принадлежит к группе радиоактивных веществ, равномерно распределяющихся по органам и тканям, по этой причине относится к среднеопасным по радиотоксичности нуклидам. Он обладает хорошей способностью проникать в организм вместе с калием посредством пищевых цепочек.

Основной источник поступления цезия в организм человека – загрязнённые нуклидом продукты питания животного происхождения. Содержание радиоактивного цезия в литре коровьего молока достигает 0,8-1,1 % от суточного поступления нуклида, козьего и овечьего – 10-20 %. Однако в основном он накапливается в мышечной ткани животных: в 1 кг мяса коров, овец, свиней и кур содержится 4,8, 20 и 26 % (соответственно) от суточного поступления цезия. В белок куриных яиц попадает меньше – 1,8-2,1 %. Ещё в больших количествах цезий накапливается в мышечных тканях гидробионтов: активность 1 кг пресноводных рыб может превышать активность 1 л воды более чем в 1000 раз (у морских – ниже) .

Основной источник цезия для населения России – молочные и зерновые продукты (после аварии на ЧАЭС – молочные и мясные), в странах Европы и США цезий поступает в основном с молочными и мясными продуктами и меньше – с зерновыми и овощными . Создаваемое таким образом постоянное внутреннее облучение наносит существенно больший вред, чем внешнее облучение этим изотопом .

Опубликованные методики измерения активности 137 Cs по его β-излучению предполагают радиохимическую подготовку пробы и выделение цезия с высокой степенью чистоты для исключения мешающего влияния других β-излучателей. Современные методы определения 137 Cs основаны, как правило, на регистрации гамма-излучения с энергией 661,6 кэВ. Они подразделяются на инструментальные, нижний предел определения (НПО) которых составляет 1-10 Бк/кг (или Бк/дм 3), и методы с предварительным химическим обогащением (НПО до 10 -2 Бк/кг). Для концентрирования 137 Cs из разбавленных растворов чаще всего используют его соосаждение с ферроцианидами никеля, меди, цинка, железа, кобальта, кальция, магния или сорбенты-коллекторы на их основе.

12. Плутоний

Плутоний (plutonium ) Pu – искусственный радиоактивный химический элемент III группы Периодической системы элементов Менделеева, атомный номер 94, трансурановый элемент, относится к актиноидам. Первый нуклид 238 Pu открыт в 1940 г. Г.Т.Сиборгом (G.Th.Seaborg), Э.М.Мак-Милланом (E.M. McMillan), Дж.Э.Кеннеди (J.E.Kennedy) и А.Ч.Валом (A.Ch.Wahl). Весной 1941 г. Сиборг с сотрудниками обнаружили и впервые выделили четверть микрограмма 239 Pu после распада 239 Np, образовавшегося при облучении 238 U ядрами тяжелого водорода (дейтонами). Вслед за ураном и нептунием новый элемент получил свое имя в честь открытой в 1930 г. планеты Плутон. С 24 августа 2006 г. по решению Международного астрономического союза Плутон более не является планетой Солнечной системы. В греческой мифологии Плутон (он же Аид) – бог царства мертвых .

Плутоний Pu – опаснейший тяжелый металл. Имеет 15 радиоактивных изотопов с массовыми числами от 232 до 246, в основном α-излучателей. На Земле имеются лишь следы этого элемента и только в урановых рудах. Величины Т½ всех изотопов плутония много меньше возраста Земли, и поэтому весь первичный плутоний (существовавший на нашей планете при её формировании) полностью распался. Однако ничтожные количества 239 Pu постоянно образуются при β-распаде 239 Np, который, в свою очередь, возникает при ядерной реакции урана с нейтронами (например, нейтронами космического излучения).

Поэтому следы плутония обнаружены в урановых рудах в таких микроскопических количествах (0,4-15 частей Pu на 10 12 частей U), что о его добыче из урановых руд не может быть и речи. Около 5000 кг его выделилось в атмосферу в результате ядерных испытаний. По некоторым оценкам, почва в США содержит в среднем 2 миллиКюри (28 мг) плутония на км 2 от выпадения радиоактивных осадков. Это типичный продукт творения человеческих рук; его получают в ядерных реакторах из урана-238, который последовательно превращается в уран-239, нептуний-239 и плутоний-239.

Чётные изотопы плутоний-238, -240, -242 не являются делящимися материалами, но могут делиться под действием нейтронов высокой энергии (являются делимыми). Они не способны поддерживать цепную реакцию (за исключением плутония-240). Получены изотопы 232 Pu – 246 Pu; среди продуктов взрыва термоядерных бомб обнаружены также 247 Pu и 255 Pu. Наиболее устойчив малодоступный 244 Pu (α-распад и спонтанное деление, Т 1/2 = 8,2·10 7 лет, атомная масса 244,0642). В свободном виде хрупкий серебристо-белый металл. Следы изотопов 247 Pu и 255 Pu обнаружены в пыли, собранной после взрывов термоядерных бомб.

На ядерные исследования и создание атомной промышленности в США, как позднее и в СССР, были брошены огромные силы и средства. В короткий срок были изучены ядерные и физико-химические свойства плутония (табл. 19) . Первый ядерный заряд на основе плутония был взорван 16 июля 1945 г. на полигоне Аламогордо (испытание под кодовым названием «Тринити»). В СССР первые опыты по получения 239 Pu были начаты в 1943-1944 гг. под руководством академиков И.В. Курчатова и В.Г. Хлопина. Впервые плутоний в СССР был выделен из облучённого нейтронами урана. В 1945 г. и в 1949 г. в СССР начал работать первый завод по радиохимическому выделению.

Таблица 19
Ядерные свойства важнейших изотопов плутония

Примечание. Все изотопы плутония – слабые гамма-излучатели. Плутоний-241 превращается в америций-241 (мощный гамма-излучатель)

Лишь два изотопа плутония имеют практическое применение в промышленных и военных целях. Плутоний-238, получаемый в ядерных реакторах из нептуния-237, используется для производства компактных термоэлектрических генераторов. Шесть миллионов электрон-вольт освобождается при распаде одного атомного ядра плутония-238. В химической реакции та же энергия выделяется при окислении нескольких миллионов атомов. В источнике электричества, содержащем один килограмм плутония-238, развивается тепловая мощность 560 МВт. Максимальная мощность такого же по массе химического источника тока – 5 Вт.

Существует немало излучателей с подобными энергетическими характеристиками, но одна особенность плутония-238 делает этот изотоп незаменимым. Обычно альфа-распад сопровождается сильным гамма-излучением, проникающим через большие толщи вещества. 238 Pu – исключение. Энергия гамма-квантов, сопровождающих распад его ядер, невелика, защититься от неё несложно: излучение поглощается тонкостенным контейнером. Мала и вероятность самопроизвольного деления ядер этого изотопа. Поэтому он нашёл применение не только в источниках тока, но и в медицине. Батарейки с плутонием-238 служат источником энергии в специальных стимуляторах сердечной деятельности, срок службы которых достигает 5 лет и более.
Плутониево-бериллиевый сплав работает как лабораторный источник нейтронов. Изотоп Pu-238 находится в ряде атомных термоэлектрических генераторов энергии на борту космических исследовательских аппаратов. Благодаря долгому времени жизни и высокой тепловой мощности, этот изотоп используется почти исключительно в РИТЭГ космического назначения, например, на всех аппаратах, улетавших дальше орбиты Марса.

Из всех изотопов наиболее интересным представляется Pu-239, его период полураспада 24110 лет. Как делящийся материал, 239 Pu широко используют в качестве ядерного топлива в атомных реакторах (энергия, освобождающаяся при расщеплении 1 г 239 Pu, эквивалентна теплоте, выделяющейся при сгорании 4000 кг угля), в производстве ядерного оружия (т.н. «оружейный плутоний») и в атомных и термоядерных бомбах, а также для ядерных реакторов на быстрых нейтронах и атомных реакторов гражданского и исследовательского назначения. Как источник α-излучения плутоний, наряду с 210 Po, нашел широкое применение в промышленности, в частности, в устройствах элиминации электростатических зарядов. Этот изотоп находит применение и в составе контрольно-измерительной аппаратуры .

Плутоний имеет множество специфических свойств. Он обладает самой низкой теплопроводностью изо всех металлов, самой низкой электропроводностью, за исключением марганца. В своей жидкой фазе это самый вязкий металл. Температура плавления -641°C; температура кипения -3232°C; плотность - 19,84 (в альфа-фазе). Это крайне электроотрицательный, химически активный элемент, гораздо в большей степени, чем уран. Он быстро тускнеет, образуя радужную плёнку (подобно радужной масляной плёнки), вначале светло-жёлтую, со временем переходящую в тёмно-пурпурную. Если окисление довольно велико, на его поверхности появляется оливково-зелёный порошок оксида (PuO 2). Плутоний охотно окисляется, и быстро коррозирует даже в присутствии незначительной влажности .

При изменении температуры плутоний подвергается самым сильным и неестественным изменениям плотности. Плутоний обладает шестью различными фазами (кристаллическими структурами) в твёрдой форме, больше чем любой другой элемент.

Соединения плутония с кислородом, углеродом и фтором используются в ядерной промышленности (непосредственно или в качестве промежуточных материалов). Металлический плутоний не растворяется в азотной кислоте, но диоксид плутония растворяется в горячей концентрированной азотной кислоте. Однако в твердой смеси с диоксидом урана (например, в отработавшем топливе ядерных реакторов) растворимость диоксида плутония в азотной кислоте увеличивается, поскольку диоксид урана растворяется в ней. Эта особенность используется при переработке ядерного топлива (табл. 20).

Таблица 20
Соединения плутония и их применение

Важнейшие соединения плутония: PuF 6 (легкокипящая жидкость; термически значительно менее стабилен, чем UF 6), твердые оксид PuO 2 , карбид PuC и нитрид PuN, которые в смесях с соответствующими соединениями урана могут использоваться как ядерное горючее.

Наибольшее распространение получили такие радиоизотопные устройства, как ионизационные сигнализаторы пожара или радиоизотопные индикаторы дыма. При механической обработке плутоний легко образует аэрозоли.

В природе образуется при β-распаде Np-239, который, в свою очередь, возникает при ядерной реакции урана-238 с нейтронами (например, нейтронами космического излучения). Промышленное производство Pu-239 также основано на этой реакции и происходит в атомных реакторах. Плутоний-239 первым образуется в ядерном реакторе при облучении урана-238, чем длительнее этот процесс, тем больше возникает более тяжелых изотопов плутония. Плутоний-239 должен быть химически отделен от продуктов деления и оставшегося в ОЯТ урана. Этот процесс называется репроцессингом. Поскольку все изотопы имеют одинаковое число протонов и разное – нейтронов, их химические свойства (химические свойства зависят от числа протонов в ядре) тождественны, поэтому очень трудно разделить изотопы с помощью химических методов.

Последующее отделение Pu-239 от урана, нептуния и высокорадиоактивных продуктов деления осуществляют на радиохимических заводах радиохимическими методами (соосаждением, экстракцией, ионными обменами др.) Металлический плутоний обычно получают востановлением PuF 3 , PuF 4 или PuO 2 парами бария, кальция или лития.

Затем используют его способность к расщеплению под действием нейтронов в атомных реакторах, а способность к самоподдерживающейся цепной реакции деления при наличии критической массы (7 кг) – в атомных и термоядерных бомбах, где он является основным компонентом. Критическая масса его α-модификации 5,6 кг (шар диаметром 4,1 см). 238 Pu используется в «атомных» электрических батарейках, обладающих длительным сроком службы. Изотопы плутония служат сырьем для синтеза трансплутониевых элементов (Am и др.).

Облучая Pu-239 нейтронами, можно получать смесь изотопов, из которых изотоп Pu-241, также как и Pu-239, является делящимся и мог бы быть использован для получения энергии. Однако, его период полураспада 14,4 года, что не позволяет его длительно сохранять, к тому же, распадаясь, он образует неделящийся Am-241 (α-, γ-радиоактивный) с периодом полураспада 432,8 года. Получается, что примерно через каждые 14 лет количество Am-241 в окружающей среде удваивается. Обнаружить его, как и другие трансурановые элементы, обычной γ-спектрометрической аппаратурой сложно и требуются весьма специфичные и дорогостоящие методы обнаружения. Изотоп Pu- 242 по ядерным свойствам наиболее похож на уран-238, Am-241, получавшийся при распаде изотопа Pu-241, использовался в детекторах дыма.

Америций-241, также как и другие трансурановые элементы (нептуний, калифорний и другие), является экологически опасным радионуклидом, являясь преимущественно α-излучающим элементом, обуславливающим внутреннее облучение организма.

Накопленного на Земле плутония более чем достаточно . Его производства абсолютно не требуется как для обороны, так и энергетики. Тем не менее, из 13 существовавших в СССР реакторов, производивших оружейный плутоний, продолжают работать 3: два из них в г. Северске. Последний такой реактор в США был остановлен в 1988 г. .

Качество плутония определяется по процентному содержанию в нем изотопов (кроме плутония-239) (табл. 21).

На сентябрь 1998 г. цены на плутоний, установленные изотопным отделением Ок-риджской Национальной лаборатории (ORNL) были таковы: $8,25/мг за плутоний-238 (97% чистоты); $4,65/мг за плутоний-239 (>99,99%); $5,45/мг за плутоний-240 (>95%); $14,70/мг за плутоний-241 (>93%) и $19,75/мг за плутоний-242.

Таблица 21
Качество плутония

Эта классификация плутония по качеству, разработанная Департаментом энергетики США, достаточно произвольна. Например, из топливного и реакторного плутония, менее пригодных для военных целей, чем оружейный, также можно сделать ядерную бомбу. Плутоний любого качества может быть применен для создания радиологического оружия (когда радиоактивные вещества распыляются без осуществления ядерного взрыва).

Всего 60 лет назад зеленые растения и животные не содержали в своем составе плутоний, сейчас до 10 т его распылено в атмосфере. Около 650 т наработано атомной энергетикой и свыше 300 т военным производством. Значительная часть всего производства плутония находится в России .

Попадая в биосферу, плутоний мигрирует по земной поверхности, включаясь в биохимические циклы. Плутоний концентрируется морскими организмами: его коэффициент накопления (т.е. отношение концентраций в организме и во внешней среде) для водорослей составляет 1000-9000, для планктона (смешанного) – около 2300, для моллюсков – до 380, для морских звёзд – около 1000, для мышц, костей, печени и желудка рыб – 5,570, 200 и 1060 соответственно. Наземные растения усваивают плутоний главным образом через корневую систему и накапливают его до 0,01% от своей массы. С 70-х гг. 20 века доля плутония в радиоактивном загрязнении биосферы возрастает (облучённость морских беспозвоночных за счёт плутония становится больше, чем за счёт 90 Sr и 137 Cs). ПДК для 239 Pu в открытых водоёмах и воздухе рабочих помещений составляет соответственно 81,4 и 3,3ּ 10 -5 Бк/л .

Поведение плутония в воздушной среде определяет условия для безопасного хранения и обращения с ним в процессе выработки (табл. 22). Окисление плутония создает риск для здоровья людей, так как диоксид плутония, будучи устойчивым соединением, легко попадает в легкие при дыхании. Его удельная активность в 200 тыс. раз выше, чем у урана, к тому же освобождения организма от попавшего в него плутония практически не происходит в течение всей жизни человека.

Период биологического полувыведения плутония 80-100 лет при нахождении в костной ткани, концентрация его там практически постоянна. Период полувыведения из печени – 40 лет. Хелатные добавки могут ускорить выведение плутония .

Таблица 22
Изменение свойств плутония в воздушной среде

Плутоний называют «ядерным ядом», его допустимое содержание в организме человека оценивается нанограммами. Международная комиссия по радиологической защите (МКРЗ) установила норму ежегодного поглощения на уровне 280 нанограмм. Это значит, что для профессионального облучения концентрация плутония в воздухе не должна превышать 7 пикоКюри/м 3 . Максимально допустимая концентрация Pu-239 (для профессионального персонала) 40 наноКюри (0.56 микрограмма) и 16 наноКюри (0.23 микрограмма) для лёгочной ткани.

Поглощение 500 мг плутония как мелкораздробленного или растворённого материала может привести к смерти от острого облучения пищеварительной системы за несколько дней или недель. Вдыхание 100 мг плутония в виде частиц оптимального для удержания в лёгких размера 1-3 микрона ведёт к смерти от отёка лёгких за 1-10 дней. Вдыхание дозы в 20 мг приводит к смерти от фиброза примерно за месяц. Для доз много меньших этих величин проявляется хронический канцерогенный эффект.
На протяжении всей жизни риск развития рака лёгких для взрослого человека зависит от количества попавшего в тело плутония. Приём внутрь 1 микрограмма плутония представляет риск в 1 % развития рака (нормальная вероятность рака 20 %). Соответственно 10 микрограмм увеличивают риск рака с 20 % до 30 %. Попадание 100 микрограмм или более гарантирует развитие рака лёгких (обычно через несколько десятилетий), хотя свидетельства повреждения лёгких могут появиться в течении нескольких месяцев. Если он проникает в систему кровообращения, то с большой вероятностью начнёт концентрироваться в тканях, содержащих железо: костном мозге, печени, селезёнке. Если 1,4 микрограмма разместятся в костях взрослого человека, в результате ухудшится иммунитет и через несколько лет может развиться рак.

Дело в том, что Pu-239 является α-излучателем, и каждая его α-частица в биологической ткани образует вдоль своего короткого пробега 150 тыс. пар ионов, повреждая клетки, производя различные химические превращения. 239 Pu принадлежит к веществам со смешенным типом распределения, поскольку накапливается не только в костном скелете, но и в печени. Очень хорошо удерживается в костях и практически не удаляется из организма благодаря замедленности обменных процессов в костной ткани. По этой причине данный нуклид принадлежит к разряду наиболее токсичных .

Находясь в организме, плутоний становится постоянным источником α-излучения для человека, вызывая костные опухоли, рак печени и лейкемию, нарушения кроветворения, остеосаркомы, рак лёгких, являясь, таким образом, одним из самых опасных канцерогенов (табл. 23).

Список литературы

1. Тихонов М.Н., Муратов О.Э., Петров Э.Л. Изотопы и радиационные технологии: постижение реальности и взгляд в будущее // Экологическая экспертиза. Обз.инф., 2006, №6, с. 38-­99. – М., ВИНИТИ РАН.
Тихонов М.Н., Муратов О.Э., Петров Э.Л. Изотопы и радиационные технологии: постижение реальности и взгляд в будущее // Экологическая экспертиза. Обз.инф., 2006, №6, с. 38-­99. – М., ВИНИТИ РАН.2. Баженов В.А., Булдаков Л.А., Василенко И.Я. и др. Вредные химические вещества. Радиоактивные вещества: Справочное издание //Под ред. В.А. Филова и др.–Л.: Химия, 1990. – 464 с.
3. Химическая энциклопедия: в 5 т. // Гл. ред. Зефиров Н.С. – М.: Большая Российская энциклопедия, 1995. – Т. 4, с. 153-154 (радий), с. 282 (рубидий), с. 283 (рутений), с. 300 (свинец), с. 560 (технеций), с. 613 (торий); 1999. - Т. 5, с. 41 (уран), с. 384 (цирконий).
4. Химическая энциклопедия: в 5 т. // Гл. ред. Кнунянц И.Л. – М.: Советская энциклопедия, 1990.– Т.1, с. 78 (актиний), с. 125 (эмериций), с. 241 (барий); Т. 2, с. 284 (калий), с. 286 (калифорний), с.414 (кобальт), с. 577 (лантан); 1992. Т. 3, с. 580 (плутоний).
5. Несмеянов А. Н. Радиохимия. – М.: Химия, 1978. - 560 с.
6. Широков Ю.М., Юдин Н.П. Ядерная физика. – М., Наука, 1980.
7. Козлов В.Ф. Справочник по радиационной безопасности. – 5-е изд., перераб. и доп. – М.: Энергоатомиздат, 1999. – 520 с.
8. Моисеев А.А., Иванов В.И. Справочник по дозиметрии и радиационной гигиене. – М.: Энергоатомиздат, 1992. – 252 с.
9. Кириллов В.Ф., Книжников В.А., Коренков И.П. Радиационная гигиена // Под ред. Л.А. Ильина. – М.: Медицина, 1988. - 336 с.
10. Рихванов Л.П. Общие и региональные проблемы радиоэкологии. – Томск: ТПУ, 1997. – 384 с.
11. Бэгнал К. Химия редких радиоактивных элементов. Полоний – актиний: Пер. с англ. // Под ред. Ю.В. Гагаринского. – М.: Изд-во иностр. лит-ры. – 256 с.
12. Гусев Н.Г., Рубцов П.М., Коваленко В.В., Колобашкин В.В. Радиационные характеристики продуктов деления: Справочник. – М.: Атомиздат, 1974. – 224 с.
13. Трансурановые элементы в окружающей среде // Под ред. У.С. Хэнсона: Пер. с англ. – М.: Мир, 1985. – 344 с.
14. Смыслов А.А. Уран и торий в земной коре. – Л.: Недра, 1974. – 232 с.
15. Ионизирующие излучения: источники и биологические эффекты. Научный комитет ООН по действию атомной радиации (НКДАР). Доклад за 1982 г. в Генеральной Ассамблее. Т.1. – Нью-Йорк, ООН, 1982. – 882 с.
16. Источники, эффекты и опасность ионизирующей радиации // Доклад Научного комитета ООН по действию атомной радиации Генеральной Ассамблее за 1988 год. – М.: Мир, 1992. – 1232 с.
17. Василенко И.Я. Токсикология продуктов ядерного деления. – М.: Медицина, 1999. – 200 с.
18. Израэль Ю.А., Стукин Е.Д. Гамма – излучение радиоактивных выпадений. – М.: Атомиздат, 1967. – 224 с.
19. Алексахин Р.М., Архипов Н.П., Василенко И.Я. Тяжелые естественные радионуклиды в биосфере. – М.: Наука, 1990. – 368 с.
20. Криволуцкий Д.А. и др. Действие ионизирующей радиации на биогеоценоз. – М.: Гидрометеоиздат, 1977. – 320 с.
21. Булдаков Л.А. Радиоактивные вещества и человек.–М.: Энергоатомиздат, 1990 – 160 с.
22. Рузер Л.С. Радиоактивные аэрозоли //Под ред. А.Н. Мартынюка. – М.: Энергоатомиздат, 2001. – 230 с.
23. Журавлев В.Ф. Токсикология радиоактивных веществ. – М.: Энергоатомиздат, 1990. – 336 с.
24. Моисеев А.А. Цезий-137. Окружающая среда – человек. – М.: Энергоатомиздат, 1985. – 121 с.
25. Тихонов М.Н., Муратов О.Э. Альтернативный ядерно-топливный цикл: необходимость и актуальность // Экология промышленного производства, 2009, вып. 4,с. 40-48.
26. Алексахин Р.М., Васильев А.В., Дикарев В.Г. и др. Сельскохозяйственная радиоэкология. – М., Экология, 1991.
27. Чалов П.И. Изотопное фракционирование природного урана. – Фрунзе: Илим, 1975.
28. Пилипенко А.Т. Натрий и калий // Справочник по элементарной химии. – 2-е изд. – Киев: Наукова думка, 1978, с. 316-319.
29. Тихонов М.Н. Радоновая опасность: источники, дозы и нерешенные вопросы // Экологическая экспертиза. Обз.инф., 2009, вып. 5, с. 2-108. – М., ВИНИТИ РАН.
30. Гудзенко В.В., Дубинчук В.Т. Изотопы радия и радона в природных водах. – М.: Наука, 1987. – 157 с.
31. Мартынюк Ю.Н. К вопросу о качестве питьевой воды по радиационному признаку // АНРИ, 1996, №1, с. 64-66.
32. Борисов Н.Б., Ильин Л.А., Маргулис У.Я. и др. Радиационная безопасность при работе с полонием-210 // Под ред. И.В. Петрянова и Л.А. Ильина. – М.: Атомиздат, 1980. – 264 с.
33. Методика выполнения измерений объемной активности полония-210 и свинца-210 в природных водах альфа-бета-радиометрическим методом с радиохимической подготовкой. – М., 2001.
34. Гусев Н.Г., Беляев В.А. Радиоактивные выбросы в биосфере: Справочник. – М.: Энергоатомиздат, 1991. – 255 с.
35. Болсуновский А.Я. Производство ядерных материалов в России и загрязнение окружающей среды. – В кн.: Атом без грифа «Секретно»: точки зрения. – Москва-Берлин, 1992, с. 9-29.
36. Федорова Е.А., Пономарева Р.П., Милакина Л.А. Закономерности поведения 14 С в системе атмосфера-растение в условиях непостоянной концетрации СО 2 в воздухе // Экология, 1985, №5, с. 24-29.
37. Пономарева Р.П., Милакина Л.А., Савина В.И. Закономерности поведения углерода-14 в пищевых цепях человека в условиях действия локального источника выбросов // Атомная промышленность: окружающая среда и здоровье населения / Под ред. Л.А. Булдакова, С.Н. Демина. – М., 1988, с. 240-249.
38. Рублевский В.П., Голенецкий С.П., Кирдин Г.С. Радиоактивный углерод в биосфере. – М.: Атомиздат, 1979. – 150 с.
39. Артемова Н.Е., Бондарев А.А., Карпов В.И., Курдюмов Б.С. и др. Допустимые выбросы радиоактивных и вредных химических веществ в приземном слое атмосферы. – М.: Атомиздат, 1980. – 235 с.
40. Демин С.Н. Проблема углерода-14 в районе ПО «Маяк» // Вопросы радиационной безопасности, 2000, №1, с. 61-66.
41. Сахаров А.Д. Радиоактивный углерод ядерных взрывов и непороговые биологические эффекты // Атомная энергия, 1958, Т. 4, №6, с. 576-580.
42. Сахаров А.Д. Радиоактивный углерод ядерных взрывов и непороговые биологические эффекты // Наука и всеобщая безопасность, 1991, Т. 1, №4, с. 3-8.
43. Германский А.М. Атмосферный радиоуглерод и смертность в Дании. Интернет-журнал «Коммерческая биотехнология», 2005.
44. Эванс Э. Тритий и его соединения. – М., Атомиздат, 1970.
45. Ленский Л.А. Физика и химия трития. – М., Атомиздат, 1981.
46. Беловодский Л.Ф., Гаевой В.К., Гришмановский В.И. Тритий. – М., Атомиздат, 1985.
47. Андреев Б.М., Зельвенский Я.Д., Катальников С.Г. Тяжелые изотопы водорода в ядерной технике. – М., Атомиздат, 1987.
48. Леенсон И.А. 100 вопросов и ответов по химии. – М., АСТ-Астрель, 2002.
49. Дубасов Ю.В., Окунев Н.С., Пахомов С.А. Мониторинг радионуклидов ксенона и криптона-85 в Северо-Западном регионе России в 2007-2008 гг. // Сб.докл. III Межд. ядерного форума 22-26 сент. 2008 г. – СПб.: НОУ ДПО «АТОМПРОФ», 2008, с. 57-62.
50. Ксензенко В.И., Стасиневич Д.С. Химия и технология брома, йода и их соединений. 2-е изд. – М.: Ин.лит., 1995. – 562 с.
51. Бэгнал К. Химия селена, теллура и полония. – М., 1971.
52. Методические указания МУ 2.6.1.082-96. Оценка дозы внутреннего облучения щитовидной железы йодом-131 по результатам определения содержания йода-129 в объектах окружающей среды (Утв. Зам. Главного государственного санитарного врача РФ 24 мая 1996 г.).
53. Гаврилин Ю.И., Волков В.Я., Макаренкова И.И. Ретроспективное восстановление интегральных выпадений йода-131 по населенным пунктам Брянской области России на основе результатов определения в 2008 г. содержания йода-129 в почве // Радиационная гигиена, 2009, Т. 2, №3, с. 38-44.
54. Василенко И.Я., Василенко О.И. Стронций радиоактивный // Энергия: экономика, техника, экология, 2002, №4, с. 26-32.
55. Василенко И.Я. Радиоактивный цезий-137 // Природа, 1999, №3, с. 70-76.
56. Плутониевая экономика: выход или тупик. Плутоний в окружающей среде // Сост. Миронова Н.И. – Челябинск, 1998. – 74 с.
57. Блюменталь У.Б. Химия циркония. – М., 1963.
58. Перцов Л.А. Ионизирующее излучение биосферы. – М.: Атомиздат, 1973. – 288 с.
59. Популярная библиотека химических элементов. Кн.2. Серебро-нильсборий и далее. – 3-е изд. – М.: Наука, 1983. – 573 с.
60. Огородников Б.И. Торон и его дочерние продукты в проблеме ингаляционного облучения // Атомная техника за рубежом, 2006, №6, с. 10-15.
61. Ярмоненко С.П. Радиобиология человека и животных.-М.: Высшая школа, 1988.-424 с.
62. Бабаев Н.С., Демин В.Ф., Ильин Л.А. и др. Ядерная энергетика, человек и окружающая среда /Под ред. акад. А.П. Александрова. – М.: Энергоатомиздат, 1984. – 312 с.
63. Абрамов Ю.В. и др. Определение доз внешнего облучения органов и тканей в соответствии с требованиями НРБ -99 в производственных условиях //Медицина экстремальных ситуаций, 2000, № 3 (6), с.55-60.
64. Алексахин Р.М., Булдаков Л.А., Губанов В.А. и др. Крупные радиационные аварии: последствия и защитные меры /Под общ. ред. Л.А.Ильина и В.А. Губанова. – М.: ИздАТ, 2001. -752 с.
65. Машкович В.П., Кудрявцева А.В. Защита от ионизирующих излучений: Справочник, 4-е изд. – М.: Энергоатомиздат, 1995.
66. Радиационная медицина. Т.2. Радиационные поражения человека / Под общ. ред. акад. РАМН Л.А.Ильина. –М.:ИздАТ, 2001. -432 с.

На территории Республики Беларусь плотность радиоактивного загрязнения составила от 1 до 200 Кu/км2. Примечание: из территорий с активностью более 40 Кu/км2 после аварии на ЧАЭС население было выселено, но часть из них была снова заселена мигрантами из стран СНГ. Всего было отселено 135 тысяч человек.

Дадим краткую характеристику основным оставшимся радионуклидам и продуктам их распада.

Цезий-137 . Это щелочной металл серебристо-белого цвета, мягкий, тягучий. В воздухе моментально воспламеняется. В природе входит в состав отдельных минералов. Хорошо сорбируется почвами (особенно черноземами). Бета- и гамма-излучатель. Период полураспада составляет 30 лет. На территорию республики выпал в виде дисперсных частиц размером от 2 мкм до нескольких сотен мкм. Цезий-137 закрепляется в бедных калием почвах, а в почвах богатых органикой хорошо усваивается корневой системой и легко передвигается в самих растениях. Цезия много в зерне, стеблях картофеля, в зелени и других растениях. В водной среде процессы миграции цезия идут интенсивнее, поэтому в рыбе он накапливается в значительных количествах. В организм человека поступает через желудочно-кишечный тракт. Легко всасывается в желудочно-кишечном тракте (50%–80%) и свободно циркулирует в составе крови по всему телу. Основная часть цезия накапливается в мышцах (80%), в костях – (8%). Выводится из организма с мочой, калом и потом. Период биологического полувыведения из организма взрослого человека – до 3-х месяцев, у детей до 15 лет – 50 суток, до 5 лет – 20 суток.

Аналогичное накопление радионуклидов происходит и у животных, но у коров большая часть цезия переходит в молоко, у кур – в яйца. По химическим свойствам цезий-137 близок к калию и является его конкурентом (если в организме дефицит калия, усваивается цезий). При попадании в организм человека вызывает лейкемию, рак молочной железы, печени, подавление системы кроветворения, угнетение костного мозга, опухоли кожи и другие заболевания. При попадании на кожу цезий всасывается по кровеносным и лимфатическим капиллярам. Период биологического полувыведения его из кожи равен одним суткам.

Стронций-90 . Это серо-белый металл, легкий, ковкий, пластичный. Входит в состав минералов. Бета-излучатель. Период полураспада 29 лет. Входит в состав биологической ткани животных и растений. В растениях в основном накапливается в корневой системе. Его также много в зерне, листовых овощах. Обладая хорошей растворимостью, стронций легко вымывается из почвы и попадает в водоемы, где активно накапливается гидробионтами. Стронций-90 конкурирует с кальцием, поэтому у человека и животных избирательно накапливается в костях, но некоторое накопление происходит в почках, слюнной и щитовидной железах, в легких, откладывается также на стенках сосудов, способствует интенсивному отложению солей. Больше стронция откладывается в молодых костях. Период биологического полувыведения – около 20 лет. Процент всасывания стронция зависит от возраста (у детей процент всасывания выше); физиологического состояния организма (период беременности, лактации); приема витамина D (витамин ускоряет всасывание стронция); количества поступающего в организм кальция (чем больше поступает кальция, тем меньше всасывается стронция); пола (у мужчин всасывание идет активней).У кур стронций переходит в скорлупу яиц, у коров значительная часть переходит в молоко. Стронций-90 вызывает различные онкологические и другие заболевания. Период биологического полувыведения – около 20 лет.

Плутоний-239 . Это металл серого цвета. Альфа-излучатель. Обладает также слабым гамма-излучением и мягким рентгеновским излучением. Период полураспада – 24065 лет. Особо опасен при попадании в органы дыхания, желудочно-кишечный тракт и на поврежденную кожу. При дефиците кальция и стронция избирательно накапливается в костях, но при попадании в кровеносное русло 45% плутония задерживается в печени, откуда половина выводится только через 20 лет. Однако, на практике уже через 2–3 месяца возникает цирроз печени. Плутоний также аккумулируется в скелете и в лимфатических узлах. Плутоний-239 подавляет систему кроветворения и иммунную систему. На территории республики плутоний-239 выпал только в Брагинском, Светлогорском и Рогачевском районах.

В первые дни после Чернобыльской аварии самая большая опасность для населения исходила от быстро распадающегося изотопа йода-131.

В первые десятилетия после Чернобыля самой большой угрозой был цезий-137. Этого изотопа выпало больше всего, но период его полураспада - 30 лет.

С течением времени наиболее опасным последствием аварии на ЧАЭС становится америций-241 - продукт распада плутония-241. Опасность америция в том, что его количество со временем лишь возрастает. Его период полураспада огромный - 433 года. И он - источник альфа-излучения, а это смертельная угроза для живого организма.

Плутоний - элемент тяжелый. Поэтому выпадал он лишь на территории Чернобыльской зоны и вокруг нее. От плутония уберечься легко: главное, соблюдать правила личной гигиены и хозяйственной деятельности.

Вообще, радиация не мистика, а результат химических процессов. И относиться к ней надо по-научному, тогда можно и жить спокойно. О воздействии радиоактивных изотопов «Нашей Ниве» рассказал физик Валерий Гурачевский.

Прошло 30 лет после Чернобыльской катастрофы. Это не просто очередная круглая дата, но и время полураспада основных радиоактивных изотопов, которыми после взрыва была загрязнена территория Беларуси - цезия-137 и стронция-90. Из названных изотопов в результате распада образуются новые вещества. Насколько они опасны?

Валерий Гурачевский: Завершился период полураспада - это означает, что половина всех данного вида радионуклидов превратилась в стабильные нуклиды, которые уже не излучают. Еще через 30 лет распадется половина от того объема, что остался, потом - еще половина… Чтобы весь выпавший в результате Чернобыльской аварии объем цезия и стронция уменьшился в 1024 раза, нужно 10 периодов полураспада - триста лет. Так что эта история будет тянуться еще долго.

Карта загрязнения территорий цезием-137 после Чернобыльской аварии в 1986 г.


Карта загрязнения цезием-137 в 2015 г.


Карта ипрогнозируемого загрязнения территорий цезием-137 на 2026 г. и 2046 г.

Из радиоактивного стронция-90 в результате распада образуется иттрий-90, а потом уже стабильный металл цирконий. Опасен ли иттрий?

ВГ: Да, иттрий-90 также радиоактивный. Стронций, распадаясь, выделяет бета-частицу, получается иттрий. Иттрий, в свою очередь, также излучает бета-частицу.

Но иттрий имеет очень короткий период полураспада - 64 часа, при расчете опасности по стронцию автоматически учитывают и иттрий. Сколько было стронция - столько будет и иттрия. Накопления не происходит. Но бета-излучение иттрия опаснее, чем излучение стронция, для живых организмов, и фактически, когда мы говорим об опасности стронция, это не совсем верно. Подразумевается иттрий.


Карта загрязнения территорий стронцием-90 и изотопами плутония в 2015 г.

Организм принимает цезий и стронций за калий и кальций

- Каково их воздействие на живые организмы?

ВГ: Стронций находится в одном столбце таблицы Менделеева с кальцием. И живые организмы определяют их как элементы со схожими свойствами: эти вещества накапливаются в костях, в отличие от цезия-137, который (как и калий) накапливается в мягких тканях. А природа предусмотрела отличный способ выведения шлаков из мягких тканей организма - мочеполовая система. Есть такое понятие - период полувыведения из организма. Для цезия это - пара месяцев. Значит, за год он почти полностью из организма выводится.

А для костей такую систему природа не предусмотрела. Поэтому накопленное в них почти никак не выводится. Бета-излучение накопленного в костях стронция воздействует на красный костный мозг - кроветворный орган. При больших дозах накопленный в организме стронций может вызвать рак крови. Но, повторяю, речь идет об очень больших дозах. Такие дозы не получил никто из населения, лишь небольшое число ликвидаторов.

- А как стронций попадает в организм?

ВГ: Радионуклиды, стронций в частности, попадают в организм через пищу, с водой, молоком.

- Где в Беларуси можно проверить продукты питания на содержание радионуклидов?

ВГ: В Беларуси более 800 лабораторий занимаются радиационным контролем пищевой продукции. Практически на любом предприятии, которое занимается пищевым производством, есть пункт радиационного контроля. Пункты радиационного контроля существуют в системе Минздрава (санитарно-эпидемиологические учреждения), на крупных рынках.

- Накопленный в костях стронций ведет себя так же, как в природе? Распадается в иттрий, а затем в цирконий?

ВГ: Да, но концентрация этого вещества в организме микроскопическая.

Период полураспада - 432 года

В последнее время стали говорить о новом радиационном изотопе - америции, который образуется в результате распада радиоактивного плутония. Но сначала задам вопрос о плутонии: где его больше всего выпало после Чернобыльской аварии?

ВГ: Цезий и стронций - осколки деления ядер урана. Но, помимо осколков в реакторе, образуются ядра трансурановых элементов, потяжелее урана. Преобладающую роль играют четыре их вида: плутон-238, плутон-239, плутон-240 и плутон-241. Они образуюся в недрах реактора и были выброшены в атмосферу после аварии. Это тяжелые вещества: 97% их выпало в радиусе примерно 30 километров вокруг Чернобыля. Это отселенная зона, куда человеку попасть не так-то просто. Три из этих изотопов - 238, 239 и 240 - имеют альфа- излучение. По силе своего воздействия на живые организмы альфа-излучение в 20 раз опаснее, чем бета- и гамма-излучения.

Но вот парадокс: плутоний-241 имеет бета-излучение. Казалось бы, вреда от него меньше. Но именно он во время распада превращается в америций-241 - источник альфа-излучения. Период полураспада плутония-241 - 14 лет. То есть, два периода уже прошло, и три четверти выпавшего вещества превратилось в америций.

Плутония-241 во время аварии на ЧАЭС выпало больше всего - это связано с техническими характеристиками реактора. И вот теперь он превращается в америций-241. Ранее в 30-километровой зоне вокруг реактора и за ее пределами америция не было, а теперь он появляется. Его содержание возрастает и за пределами 30-километровой зоны, где трансураны были, но в количествах не превышающих допустимый уровень. И теперь нужно следить, превысит ли содержание америция допустимый уровень или нет.

Допустимый уровень

- А какой допустимый уровень?

ВГ: Законодательство америций-241 пока не учитывает, и точные допустимые нормы его содержания в природе не определены. Но они должны быть примерно такие, как и для других изотопов с альфа-излучением. И сейчас мы наблюдаем тревожную ситуацию: в зонах, расположенных близко от реактора, растет уровень альфа-излучения и возрастают размеры этих зон. Прогноз - к 2060 году америция там станет вдвое больше, чем сейчас там насчитывается всех изотопов плутония вместе взятых. А период полураспада америция - 432 года. Так что эта проблема на долгие-долгие годы.

От облучения снаружи защитит одежда

- В интернете пишут, что у излучения америция очень высокая проникающая способность.

ВГ: Проникающая способность альфа-излучения мизерная. Но при условии, что радиация воздействует на организм снаружи. От такого облучения можно укрыться листом бумаги - и бумага вбирает в себя альфа-излучение. Для человека роль такой бумаги выполняет ороговевший верхний слой кожи. Да и одежду надо учесть - ведь никто голый по зоне не бегает. Но есть еще облучение внутреннее - в случае, если источник альфа-излучения попадает в организм. С пищей, например. И оно уже опасное, так как изнутри организму нечем от него защититься. 80-90% полученных населением доз облучения сегодня, а также связанных с радиацией заболеваний, - результат внутреннего облучения.

- В каких органах накапливается америций?

ВГ: В костях, как и стронций. Это опасный радионуклид. Но, повторяю, в панику впадать не стоит. Нужно проводить исследования, измерения.

Правда ли, что америций имеет большую летучесть по сравнению с исходным плутонием и поэтому ему проще «захватывать» новые территории?

ВГ: Летучесть приблизительно такая же. Возможно, он имеет большую, чем плутоний способность переходить из почвы в растения, но это еще надо проверять.

Радикальный прогноз: вплоть до отселения части Речицкого района

- Ведутся ли исследования содержания америций в почве, его распространения?

ВГ: Да. Этим занимается Центр радиационного контроля и мониторинга окружающей среды Министерства природы, Полесский государственный радиационный заповедник - он имеет прекрасную лабораторию, благодаря нашим западным партнерам. Также соответствующим оборудованием располагают Гомельский институт радиобиологии и Институт радиологии МЧС.

Но простой фермер или председатель колхоза, сможет ли он в ближайшей из тех 800 лабораторий радиационного контроля проверить свою продукцию на содержание америция?

ВГ: Выявление америция возможно только в лабораториях с радиохимическим оборудованием. Это длительное и дорогостоящее исследование. Но, если кто-то обратится в указанные выше институции, думаю, там им помогут. В большинстве из названных 800 лабораторий можно определить уровень цезия-137 и калия-40. На стронций исследования делают не везде.

- Какие территории Беларуси заражены (или могут быть в последующие годы заражены) америцием?

ВГ: В отношении этого ученые спорят. Некоторые считают, что ситуация очень серьезная, и даже часть Речицкого района может попасть в зону заражения.

- И какие меры можно предпринимать, чтобы уберечься?

ВГ: Повторяю, это только версия. Но в крайнем случае никакие меры не помогут. Только контроль. И, если ситуация будет складываться так, как прогнозируют упомянутые ученые, - вплоть до отселения.

Основные радионуклиды в аварийном выбросе

Из книги В.Гурачевского «Введение в атомную энергетику. Чернобыльская авария и ее последствия».

Валерий Гурачевский. Кандидат физико-математических наук, доцент. Один из инициаторов создания и руководитель Центра по радиологии и качеству продуктов в АПК при Белорусском государственном агротехническом университете. Автор более 100 научных публикаций, нескольких книг - в т.ч. книги «Введение в атомную энергетику. Чернобыльская авария и ее последствия».

В Полесском радиационном заповеднике америций обнаружили в организмах диких кабанов, потому что кабаны роют землю и едят корнеплоды с землей

О том, как изучают уровень содержания америция в почве, «НН» рассказал Вячеслав Забродский, заведующий лабораторией Полесского государственного радиационно-экологического заповедника. Лаборатория имеет американские альфа- и гамма-спектрометры фирмы Canberra, с помощью которых можно исследовать содержание америция и других радиоактивных изотопов в почве и продуктах питания.

Вячеслав Забродский рядом с гамма-спектрометром

Определение уровня гамма-излучения в пробах почвы и донных отложений, рассказал Вячеслав Забродский, это не дорогостоящий процесс. Однако альфа-спектрометрия требует в тысячу раз более точных измерений. Процесс занимает около семи дней и требует дорогостоящих реактивов - анализ одной пробы может стоить сумму около двух миллионов рублей. На вопрос, может ли фермер, который хочет проверить свою продукцию или почву, обратиться в лабораторию, заведующий ответил положительно. Правда, отметил он, никто пока еще не обращался.

В любой точке заповедника небольшое количество америция в почве присутствует, говорит Забродский. Может он быть и в прилегающих районах. Ученый отмечает, что как последствие ядерных испытаний америций есть в любой точке земного шара. В меньшей концентрации, конечно.

Если америций содержится в почве, почему же не меняется законодательная база, не определены нормы его содержания? Возможно, потому не торопятся, отмечает Забродский, что америций имеет достаточно низкий коэффициент перехода в живые организмы. Связано это с тем, что, например, цезий и стронций - это радиационные аналоги калия и кальция, элементов, которые являются основой биологической жизни. А америций и плутоний, из которого он образуется, воспринимаются организмом как чужеродные элементы. И остаются, таким образом, в почве и в растения не переходят.


И все же для попадания в человеческий организм этот радиоактивный лежебока шансы имеет. Например, через организмы тех, в чей рацион входит почва.

«Мы проводили исследования на диких кабанах, - говорит Забродский. - Почва составляет 2% их рациона. Америций, плутоний мы обнаружили даже в их мышечной ткани. На минимуме возможности обнаружения, но нашли».

Могут ли эти изотопы попасть в организм с дымом?

Маловероятно, отмечает Забродский. «Когда были пожары в Хойниках, мы собирали пробы частиц дыма, сажи. Цезий, стронций в них был, но плутоний, америций - нет, поскольку его нет в древесине».


Радиационная обстановка на территории Полесского радиационно-экологического заповедника

Дмитрий Павлов: Весь плутоний выпал на закрытой территории

«Законодательство менять можно и нужно, - говорит начальник управления реабилитации пострадавших территорий Департамента по ликвидации последствий Чернобыльской АЭС Дмитрий Павлов. - Но сначала нужно оценить целесообразность. У нас весь плутоний выпал на закрытой территории, в заповеднике, куда мы не пускаем ни туристов, ни пешие группы. Зачем нормы, применяемые к этой территории, распространять на всю страну?

Да, в заповеднике есть проблема: ядерное топливо во время взрыва выпало в виде дисперсных частиц. И можно подцепить эту частицу на обувь и перенести в любую сторону. Поэтому бывает ситуация, когда в одной точке радиационный фон нормальный, а через пять метров - превышешение в сотни раз».

Но проблема с америцием, считает Павлов, раздувается искусственно: «Никто почему-то не сопоставляет территории распространения америция и самоочищения почв от цезия и стронция - посмотрите, какая там будет разница в площадях. Украина и Россия завидуют нам, ведь мы не бросили эти территории. Мы не имеем столько земли, сколько в России, чтобы можно было их бросить. Там люди живут, работают. Как можно получать там чистые продукты? Например, вносятся удобрения, они подменяют собой имеющийся в почве цезий».


Карта радиационной обстановки в Гомельской области в 2015 году.

Карта радиационной обстановки в Брестской области в 2015 году.

Как измеряется уровень стронция в молоке

Также Дмитрий Павлов согласился прокомментировать громкое дело с молоком, взятым на пробу на белорусской ферме в 45 км от Чернобыля. В том молоке, по мнению журналистов Associated Press, было выявлено десятикратное превышение содержания стронция-90.


Исследование того молока, объяснил Дмитрий Павлов, осуществлялось на устройстве MKС-АТ1315 производства белорусского предприятия «Атомтех». Для определения содержания каждого из радиоактивных изотопов требуется особенным образом готовить пробу. Простейший анализ - на цезий-137. Для него достаточно литра жидкого молока, времени на такой анализ требуется 30 минут.

Анализ на стронций требует специальной подготовки пробы. Во-первых, молока должна быть не менее трех литров. Сначала его выпаривают в течение пяти дней, пропускают через специальный фильтр. Потом сухое вещество, остающееся на фильтре, сжигают. И из трех литров молока выходит пара десятков граммов сожженного вещества. В нем-то устройство и определяет уровень содержания стронция, а потом с помощью расчетных таблиц рассчитывается содержание радионуклида в исходных трех литрах молока.

Анализ на стронций тогда даже не проводился, но в протоколе измерений, который получили на руки журналисты, устройство автоматически выдало цифры по всем возможным на нем измерениям. По стронцию-90 и калия-40 это цифры произвольные, совершенно случайные, объясняет Дмитрий Павлов.

Америций - 95-й элемент таблицы Менделеева. Синтезирован в 1944 году в Чикаго. Назван в честь Америки подобно тому, как ранее выявленный элемент с похожей внешней электронной оболочкой был назван в честь Европы.

Мягкий металл, светится в темноте за счет собственного альфа-излучения. Изотоп америций-241 накапливается в выработанном оружейном плутонии - этим обусловлено наличие альфа-излучения в ядерных отходах. Период полураспада америция-241 - 432,2 года.

Схема электронных оболочек атома америция.

Провести анализ на содержание америция можно только в лабораториях с радиохимическим оборудованием. Этим занимаются Центр радиационного контроля и мониторинга окружающей среды Министерства природы, Полесский государственный радиационный заповедник, Гомельский институт радиобиологии и Институт радиологии МЧС.

Подготовил Андрей Скурко

Цезий-137 радионуклид с периодом полураспада (Т1/2) – 30,17 лет. Ядро претерпевает?-электронный распад с величиной энергии?-излучения – 0,195 МэВ. Метастабильное ядро дочернего радионуклида бария-137 (Т1/2 = 2,5 мин.) испускает?-излучение с энергией 0,661 Мэв и превращается в стабильный химический элемент. Цезий-137 по радиотоксичности относится к группе В (средняя токсичность) и характеризуется высокой подвижностью в экологических цепях биосферы. Суммарный выброс его в окружающую среду в результате аварии на ЧАЭС составил 8,7 1010 МБк.

В организм животных цезий-137 поступает в основном с кормом. Путь поступления с воздухом в легкие менее значим. Радионуклид, попав внутрь, хорошо всасывается независимо от пути поступления. Резорбция цезия-137 в желудочно-кишечном тракте у моногастричных животных достигает 100%, у животных имеющих преджелудки до 80%. Цезий-137 в биологическом отношении аналог калию. Независимо от вида животных он распределяется сравнительно равномерно по органам и тканям.

В условиях хронического поступления цезия-137, он депонируется в организме до определенной величины, на что влияет масса животного. В отдаленные сроки, после воздействия радионуклида в небольших дозах (7,77-12,58) 104 Бк/г, у крыс длительно сохраняется лейкопения, образуются опухоли кроветворной ткани, кишечника, поджелудочной железы, молочных желез, легких, почек.

Выводится радионуклид из организма с калом и мочой. У лактирующих животных цезий-137 выделяется с молоком. Выделение его с молоком коров достигает 1,2%, с молоком овец – 15,0%, и с молоком коз – 20% суточного поступления радионуклида с кормом. Из корма птиц до 3,3% цезия-137 переходит в яйцо.

Эффективный период полувыведения радионуклида у лактирующих коров составляет от 20 до 50 дней.

Перед забоем крупного рогатого скота, получавшего корма, содержащие цезий-137, проводится радиометрический контроль, что гарантирует производство говядины соответствующей требованиям РДУ-99 (не более 500 Бк/кг).

Прижизненная оценка концентрации цезия-137 в мышечной ткани животных осуществляется прибором СПР-68-01. Детектор дозиметра должен иметь свинцовую защиту (коллиматор) с толщиной стенки 10-12 мм. Подготовка прибора к работе проводится согласно техническому описанию. Затем измеряется величина мощности экспозиционной дозы?-фона на территории, где находятся животные. После чего, детектор прибора устанавливается на чистую поверхность кожи ягодичных мышц и удерживается не менее 20 секунд для снятия показаний.

Расчет удельной активности цезия-137 в мышечной ткани проводится по формуле:

А= К (Рж – 0,6 Рф), где

А – удельная активность (Бк/кг);

К – коэффициент пересчета мощности экспозиционной дозы в удельную активность, равный – 222;

Рф – мощность экспозиционной дозы?-фона (мкР/час);

Рж – мощность экспозиционной дозы от животного (мкР/час).

Для снижения всасывания цезия -137 в желудочно-кишечном тракте животных и выведения его с фекалиями необходимо применять радиопротекторы. Сорбирующими свойствами обладают следующие химические соединения: железо-гексацианоферрат аммония (cоль Гизе); железо-гексацианоферрат калия (соль Нигровича); железо-гексацианоферрат (ферроцин). Применение этих соединений крупному рогатому скоту в виде солевых лизунцов (10%) в свободном доступе; в составе болюсов (15%) по 2-3 на одно животное с повторным введением через 2-3 месяца; в виде комбикорма (0.6%) для всех видов животных в дозе 3 г/гол., позволяет снизить переход цезия-137 в продукцию от 2 до 10 раз. Данные препараты не влияют на качество продуктов питания.