Связи стального каркаса производственного здания. Горизонтальные связи по нижним поясам Вертикальные и горизонтальные связи в строительстве

1. горизонтальные поперечные связи по нижним поясам ферм размещаются в торцах температурного блока при шаге колонн крайнего и среднего ряда 12 м. При длине блока более 144 м. дополнительно устраивают в середине блока. Образуются путем объединения нижних поясов 2-х соседних стропильных ферм с помощью решетки. В результате они выполняют совместно функции: воспринимают от стоек торцового фахверка ветровую нагрузку и передают ее на связи между колоннами и далее на фундамент, а также предотвращают перемещения вертикальных связей и растяжки между нижними поясами ферм. Распорки между нижними поясами ферм- закрепляют эти пояса от смещения, тем самым сокращая расчетную длину из плоскости фермы, уменьшает вибрации нижних поясов ферм.

2. горизонтальные продольные связи по нижним поясам ферм служат опорами для верхних концов стоек продольного фахверка; при действии крановых нагрузок вовлекают в работу соседние рамы, уменьшая поперечные деформации и избегая заклинивания мостовых кранов. Эти связи обязательны в однопролетных зданиях большой высоты, с тяжелыми мостовыми кранами, при наличии продольного фахверка. Распорки обеспечивают проектное положение ферм в процессе монтажа, ограничивают гибкость ферм из их плоскости. Роль распорок выполняют прогоны, которые закреплены от смещения.

3. горизонтальные поперечные связи по верхним поясам ферм по конструкциям и схемам размещения аналогичны связям по нижним поясам. Служат от смещения распорок по верхним поясам ферм. От них можно отказаться, если между соседними стропильными фермами блока установить вертикальные связи и через них обеспечит крепление распорок к поперечным связям по нижним поясам ферм.

4. 4. вертикальные связи между опорами ферм или балок ставят только в зданиях с плоской кровлей, причем в зданиях без подстропильных конструкций размещаются в каждом ряду колонн, а с подстропильными конструкциями – только в крайних рядах колонн при шаге 6 м. Ставят не чаще, чем через один шаг. При длине температурного блока 60-72 м на каждый ряд колонн их должно быть не более 5 при шаге 6 м и не более 3 при шаге 12 м. при наличии этих связей по верху колонн ставят распорки.

Единая модульная система в строительстве

Типизация в строительстве осуществляется на основе Единой Модульной Системы. Это правила по которым назначаются и согласуются между собой размеры зданий и конструкций.

Размеры по правилам ЕМС назначают по базе модуля. Основной модуль (М) равен 100 мм. При выборе размеров для зданий, конструкций пользуются укрупненным модулем: 6000 мм = 60М; 7200 мм = 72М. Дробный модуль применяют для назначения сечений конструкций: 50 мм = ½М.

ЕМС - единая модульная система, представляющая собой свод правил, которые координируют размеры объемно-планировочных и конструктивных частей строительных объектов и размеры сборных модулей и оборудования.

МКРС - модульная координация размеров в строительстве. Стандарт, применение которого при проектировании зданий позволяет унифицировать размеров строительных конструкций и объемно-планировочные размеры зданий. Данный стандарт предполагает унификацию следующих параметров: высоты этажей (Н0), шагов (В0) и пролетов (L0).

ЕМС основана на принципе кратности размеров. Размер любого из элементов здания должен быть кратен величине, называемой модулем. В системе ЕМС принят модуль в 100 миллиметров, который в технической документации обозначается буквой М. Соответственно, размеры крупных элементов конструкций будут обозначаться как производные от модуля. Например, 6000 мм - 60 М, 3000 мм - 30 М и так далее. Мелкие элемент обозначаются как дробные о т модуля: 50 мм - ½ М, 20 мм - 1/5 М.

15 основа планировки промзданий

Промышленные здания подразделяются по двум видам планировки:

раздельные (отдельно стоящие) здания , планировка которых хотя и дает конструктивную простоту и высокий уровень индустриальности в производстве зданий, однако отличается такими недостатками, как большая площадь застройки, большая протяженность инженерных и транспортных сетей, невозможность организации поточного производства, значительные энергозатраты на отопление помещений;

сплошные (сблокированные) здания , которые представляют собой

многопролетные корпуса большой площади (до 30...35 тыс. кв.м).Сплошная планировка обеспечивает многовариантную расстановку технологического оборудования, уменьшение площади завода на 30…40 %, снижение стоимости строительства на 10…15 %, сокращение длины инженерных и транспортных коммуникаций, сокращение периметра наружных стен на 50 % со снижением расходов на эксплуатацию. Однако недостатками сплошных зданий являются удорожание естественного освещения, затрудненный водоотвод с покрытий, усложнение путей передвижения транспорта и персонала. Блокировать цеха целесообразно в тех случаях, когда смежные производства не требуется разделять капитальными стенами и при этом не ухудшаются условия технологии производства и труда рабочих.

Планировка промышленных зданий сопровождается зонированием в пределах объема производственных зданий, помещений, участков и зон, выделяемых по признакам однотипности технологии, уровню производственной вредности, уровню пожаро- и взрывоопасности, направленности транспортных и людских потоков, по перспективам расширения и переоснащения.

На выбор этажности промышленного здания влияют:

технология производства;

климатические условия района;

требования к застройке (городская, периферийная);

характер отведенного участка (свободный, стесненный рельеф);

достоинства и недостатки.

Одноэтажные здания имеют следующие достоинства :

простое объемно-планировочное решение;

склонность к унификации и блокированию;

снижение стоимости 1 кв. м на 10 % по сравнению со стоимостью многоэтажных зданий;

облегчение установки технологического оборудования;

упрощение путей грузовых потоков и использование горизонтального транспорта;

равномерное освещение рабочих мест естественным светом через фонари;

обеспечение естественного воздухообмена.

Недостатками одноэтажных зданий являются:

большая площадь застройки;

большая протяженность инженерных и транспортных сетей;

повышенные расходы на благоустройство территории;

большая площадь наружных ограждающих конструкций и в результате значительные расходы на отопление.

Многоэтажные здания лишеныбольшинства недостатков одноэтажных зданий и рациональны по применению, особенно при нагрузках до 10 кН/кв. м.

К основным недостаткам многоэтажных зданий относятся:

потребность в вертикальном транспорте;

повышенная стоимость;

ограничение по ширине при необходимости естественного освещения (ширина не более 24 м);

высокий удельный вес подсобных помещений.

Температурный блок.

Для ограничения усилий, возникающих в конструкциях от перепада температур, здание разрезается температурно-деформационными швами на отсеки (температурные блоки), размеры которых зависят от материала каркаса, теплового режима здания и климатических условий района строительства. Эти размеры определяются расчетом.

Продольные и поперечные температурно-деформационные швы указаны синим и красным цветами соответственно.

Для железобетонного и смешанного каркаса длина температурного блока А ≤ 72 м – если в здании по длине присутствуют неразрезные элементы (например, подкрановые балки). Для бескрановых зданий нормами разрешено увеличивать А до 144 м. Однако, если в здании есть подвесное оборудование (монорельс и т.п.) длина температурного блока не должна превышать 72 м. Допускается А увеличивать до 280 м, но при этом высота строения не должна превышать 8,4 м.

Ширина температурного блока Б не должна быть больше 90-96 м.

В особых климатических районах и для неотапливаемых помещениях длину температурного блока А назначают по инструкциям, привязанным к местным климатическим условиям.

В стальных каркасах зданий с мостовыми кранами А ≤ 120 м, в бескрановых зданиях А ≤ 240 м, а Б ≤ 210 м. В зданиях с кранами большой грузоподъемности (Q до 4500 кН) или при тяжелом или особо тяжелом режиме их работы А не должна превышать 96 м.

Температурный шов

Прежде всего, необходимо разобраться с понятием температурного шва и выполняемой им функции. Тактемпературный шов представляет собой сквозную прорезь в стене здания или его кровельной плите. Для каждого здания выполняется несколько таких прорезей, в результате чего оно разделяется на несколько независимых блоков. В результате каждый из этих блоков может свободно деформироваться, что не приводит к образованию трещин в плитах. Дело в том, что деформационные швы и представляют собой своего рода искусственные трещины, которые оформлены таким образом, чтобы не создавать каких-либо проблем при эксплуатации здания. Ширина деформационного шва определяет величину, в пределах которой возможно изменение линейных размеров каждого из блоков. Точнее будет сказать наоборот, ширина температурного шва должна выбираться, исходя из возможной величины деформаций.

Проектирование температурных швов является одной из важнейших стадий строительства здания. При этом необходимо, в первую очередь, определить длину каждого из блоков, на которые стены разбиваются деформационными швами, а также ширину швов. Любые деформационные швы, в том числе и температурные, устраиваются в тех зонах, где концентрируются напряжения, вызываемые соответствующими деформациями. При этом длина блоков должна быть такой, чтобы каждый из них мог подвергаться температурным деформациям без потери конструктивной жесткости и без разрушения. Поэтому для определения данного параметра учитывается целый ряд факторов, к числу которых относятся тип стенового материала, конструктивные особенности, средние температуры в летний и зимний период, характерные для региона строительства.

Важной особенностью температурных швов является то, что они устраиваются только на высоту надземной части строения, в то время как некоторые другие деформационные швы, например осадочные, устраиваются на всю высоту здания до подошвы фундамента. Это связано с тем, что фундамент здания в значительно меньшей степени подвержен перепадам температуры и не нуждается в специальной защите

Для обеспечения пространственной жесткости и геометрической неизменяемости всего здания в целом, а также для обеспечения устойчивости колонн из плоскости поперечных рам, устанавливают вертикальные связи между колоннами.

Вертикальные связи между колоннами имеют наиболее существенное значение для создания пространственной жесткости каркаса машзала. Они предназначены для:

– создания продольной жесткости каркаса, необходимой для его нормальной эксплуатации и монтажа;

– обеспечения устойчивости колонн из плоскости поперечных рам;

– восприятия ветровой нагрузки, действующей на торец здания, и сил продольного торможения мостовых кранов и передачи их на фундаменты.

Связи по колоннам размещают в подкрановой части колонн (связи по нижним частям колонн) и в надкрановой части колонн (связи по верхним частям колонн) (рис. 2.4,а).

в
б
б
а
в

Рис. 2.5. Размещение вертикальных связей по колоннам:

а) связей нет; б) правильное расположение связей;

в); г) неправильное размещение связей



Для обеспечения свободы развития температурных деформаций продольных элементов каркаса (подкрановых балок, прогонов, распорок) жесткий пространственный брус ставят в середине здания или температурного блока (рис. 2.5,б). Если жесткие связевые брусья будут поставлены по краям блока (рис. 2.5,в), то при перепаде температур (лето-зима) будет происходить стесненное развитие температурных деформаций продольных элементов каркаса. Стеснённые температурные деформации вызовут дополнительные напряжения в продольных элементах каркаса, которые должны быть учтены в расчетах.

Если пространственный брус установить только с одного края здания или температурного блока (рис. 2.5,г), то горизонтальное перемещение торцевой колонны на противоположном конце здания будет очень велико и может привести к повреждениям узлов сопряжения элементов. Расстояние от торца здания до оси ближайшей вертикальной связи (жесткого диска), а также между осями вертикальных связей в одном температурном отсеке, не должно превышать величин, указанных в табл. 42 СНиП.

Машинные залы электростанций обычно имеют значительную длину. В этом случае жесткий пространственный брус ставят по длине машзала в двух панелях. При принятых в курсовом проекте длинах машзалов жесткий пространственный брус можно расположить в одной панели в середине здания. Расстояние от него до торца здания не должно превышать 60 м.

Вертикальные связи в верхних частях колонн обладают небольшой жесткостью и незначительно препятствуют температурным деформациям каркаса. Поэтому вертикальные связи в верхних частях колонн размещают у торцов здания, у температурных швов и в средней части здания или температурного отсека, там, где располагают связи по нижним частям колонн (рис. 2.4).

Вертикальные связи в верхних частях колонн предназначены:

– для обеспечения удобства монтажа сооружения, который обычно начинается с краёв. Первая и вторая рамы и связи между ними образуют устойчивый элемент, к которому как бы прикрепляют остальные рамы;

– для восприятия ветровой нагрузки, действующей на торец здания. Благодаря этим связям нагрузка передается на подкрановые балки, затем на нижние связи между колоннами и далее на фундамент;

– для создания вместе со связями по нижним частям колонн жесткого пространственного бруса.

Связи по фермам

Связи по фермам предназначены для:

– создания (совестно со связями по колоннам) общей пространственной жесткости и геометрической неизменяемости каркаса;

– обеспечения устойчивости сжатых элементов ферм из плоскости ригеля путём сокращения их расчетной длины;

– восприятия горизонтальных нагрузок на отдельные рамы (поперечного торможения крановых тележек) и перераспределения их на всю систему плоских рам каркаса;

– восприятия и (совестно со связями по колоннам) передачи на фундаменты некоторых горизонтальных нагрузок на конструкции машзала (ветровых, действующих на торец здания);

– обеспечения удобства монтажа ферм.

Связи по фермам подразделяют на горизонтальные и вертикальные. Горизонтальные связи располагают в плоскости верхних и нижних поясов ферм (рис. 2.4,б,в). Горизонтальные связи, расположенные поперёк здания называют поперечными, а вдоль – продольными.

Вертикальные связи располагают между фермами (рис. 2.4,а). Их выполняют в виде самостоятельных монтажных элементов (ферм) и устанавливают совместно с поперечными связями по верхним и нижним поясам ферм. По ширине пролета ставят 3 и более вертикальные связевые фермы. Две, из которых располагают по опорным узлам ферм, а остальные в плоскости вертикальных стоек ферм. Расстояние между вертикальными связями по фермам от 6 до 15 м. Вертикальные связи между фермами служат для устранения деформаций сдвига элементов покрытия в продольном направлении. Поперечные горизонтальные связи в плоскости верхних и нижних поясов ферм (рис. 2.4,б, в) совместно с вертикальными связями между фермами устанавливают по торцам здания и в средней его части, там, где размещены вертикальные связи по колоннам. Они создают жесткие пространственные брусья у торцов здания и в средней его части. Пространственные брусья у торцов здания служат для восприятия ветровой нагрузки, действующей на торцевой фахверк и передачи ее на связи по колоннам, подкрановые балки и далее на фундамент.

Элементы верхнего пояса стропильных ферм сжаты и могут потерять устойчивость из плоскости ферм. Поперечные связи по верхним поясам ферм вместе с распорками закрепляют узлы ферм от перемещения в направлении продольной оси здания и обеспечивают устойчивость верхнего пояса из плоскости ферм. Продольные связевые элементы (распорки) снижают расчетную длину верхнего пояса ферм, если они сами закреплены от смещения жестким пространственным связевым брусом. В беспрогонных покрытиях ребра панелей закрепляют узлы ферм от смещения. В покрытиях по прогонам узлы ферм от смещения закрепляют сами прогоны, если они закреплены в горизонтальной связевой ферме.

Во время монтажа верхние пояса ферм закрепляют распорками в трёх или более точках. Это зависит от гибкости фермы в процессе монтажа. Если гибкость элементов верхнего пояса фермы не превышает 220 , распорки ставят по краям и в середине пролёта (рис. 2.4,б). Если 220 , то распорки ставят чаще. В беспрогонном покрытии это закрепление производят с помощью дополнительных распорок, а в покрытиях с прогонами распорками являются сами прогоны.

б
а

Рис. 2.6. Поперечное смещение рамы от действия

крановой нагрузки:

а) при отсутствии продольных связей по нижним поясам ферм;

б) при наличии продольных связей по нижним поясам ферм

Продольные горизонтальные связи по нижним поясам ферм (рис. 2.4,в и рис.2.6.) предназначены для перераспределения горизонтальной поперечной крановой нагрузки от торможения тележки крана. Эта нагрузка действует на отдельную раму и при отсутствии связей вызывает её значительные перемещения (рис. 2.6,а).

Продольные горизонтальные связи вовлекают в пространственную работу соседние рамы, вследствие чего поперечное смещение каркаса значительно уменьшается (рис. 2.6,6).

Продольные связи по нижним поясам ферм размещают в крайних панелях ферм вдоль всего здания. В машинных залах электростанций продольные связи размещают только в первых панелях нижних поясов ферм, прилегающих к колоннам крайнего ряда. С противоположной стороны фермы продольные связи не ставят, т.к. силу поперечного торможения крана воспринимает жесткая деаэраторная этажерка.

В зданиях пролётом 30 м для закрепления нижнего пояса от продольных перемещений устанавливают распорки в средней части пролета. Эти распорки уменьшают расчетную длину, а, следовательно, и гибкость нижнего пояса ферм.

Система связей в покрытиях производственных зданий

Связи в покрытиях предназначены для обеспечения пространственной жесткости, устойчивости и неизменяемости каркаса здания, для восприятия горизонтальных ветровых нагрузок, действующих на торцы здания и фонари, горизонтальных тормозных усилий от мостовых опорных и подвесных кранов и передачи их на элементы каркаса.

Связи подразделяются на горизонтальные (продольные и поперечные) и вертикальные . Система связей зависит от высоты здания, величины пролета, шага колонн, наличия мостовых кранов и их грузоподъемности. Кроме того, конструкция всех видов связей, необходимость их установки, местоположение в покрытии определяется расчетом в каждом конкретном случае и зависит от вида несущих конструкций покрытия.

В данном разделе рассмотрены примеры устройства системы связей в покрытиях с плоскостными несущими конструкциями из металла, железобетона и дерева.

Связи в покрытиях с металлическими плоскостными несущими конструкциями

Система связей в покрытиях зданийс металлическимифермами зависит от типа ферм, шага стропильных конструкций, условий района строительства и других факторов. Она состоит из горизонтальных связей в плоскости верхних и нижних поясов стропильных ферм и вертикальных связей между фермами.

Горизонтальные связи по верхним поясам стропильных ферм чаще всего предусматривают только при наличии фонарей и располагают в подфонарном пространстве.

Горизонтальные связи в плоскости нижних поясов стропильных ферм предусмотрены двух типов. Связи первого типа состоят из поперечных и продольных связевых ферм, распорок и растяжек. Связи второго типа состоят только из поперечных связевых ферм, распорок и растяжек.

Поперечные связевые фермы располагают в торцах температурного отсека здания. При длине температурного отсека более 96 м устанавливают промежуточные поперечные связевые фермы через каждые 42-60 м.

Продольные горизонтальные связевые фермы по нижним поясам стропильных ферм для связей первого типа располагают в одно-, двух - и трехпролетных зданиях вдоль крайних рядов колонн. В зданиях с количеством пролетов более трех продольные связевые фермы располагают также и вдоль средних рядов колонн с таким расчетом, чтобы расстояние между смежными связевыми фермами не превышало двух-трех пролетов.

Связи первого типа являются обязательными в зданиях:

а) с мостовыми опорными кранами, требующими устройства галерей для прохода вдоль крановых путей;

б) с подстропильными фермами;

в) с расчетной сейсмичностью 7 - 9 баллов;

г) с отметкой низа стропильных конструкций более 24 м, (для однопролетных зданий - более 18 м);

д) в зданиях с кровлей по железобетонным плитам, оборудованных мостовыми опорными кранами общего назначения грузоподъемностью более 50 т при шаге ферм 6 м и грузоподъемностью более 20 т при шаге ферм 12 м;

е) в зданиях с кровлей по стальному профилированному настилу –

в одно - и двухпролетных зданиях, оборудованных мостовыми опорными кранами грузоподъемностью более 16 т и в зданиях с количеством пролетов более двух с мостовыми опорными кранами грузоподъемностью более 20 т.

В остальных случаях должны применяться связи второго типа , при этом при шаге стропильных ферм 12 м и наличии стоек продольного фахверка вдоль колонн крайних рядов следует предусматривать продольные связевые фермы.

Вертикальные связи располагают в местах размещения поперечных связевых ферм по нижним поясам стропильных ферм на расстоянии 6 (12) м друг от друга.

Монтажные крепления связей к конструкциям покрытия принимаются на болтах или на сварке в зависимости от величины силовых воздействий. Элементы связей разработаны из горячекатаных и гнутосварных профилей.

На рисунках 5.2.1 – 5.2.10 приведены схемы расположения связей в покрытии с фермами из парных уголков. Связи в покрытиях с применением широкополочных тавров, широкополочных двутавров и круглых труб решаются аналогично. Конструктивное решение вертикальных связей пролетом 6 и 12 м приведены на рисунке 5.2.11, 5.2.12

Связи в покрытии с фермами из замкнутых гнутосварных профилей типа «Молодечно» приведены на рисунках 5.2.13 - 5.2.16.

За основу неизменяемости покрытия в горизонтальной плоскости принят сплошной диск, образованный профилированным настилом, закрепленным по верхним поясам ферм. Настил развязывает верхние пояса ферм из плоскости по всей длине и воспринимает все горизонтальные силы, передающиеся на покрытие.

Нижние пояса ферм развязаны из плоскости вертикальными связями и распорками, которые передают все усилия с нижнего пояса ферм на верхний диск покрытия. Вертикальные связи устанавливаются через 42 – 60 м по длине температурного отсека.

В зданиях с конструкциями покрытия типа «Молодечно» с уклоном верхнего пояса 10% расположение вертикальных связей и распорок аналогично приведенному на рисунках 5.2.14 - 5.2.16. Вертикальная связь в этом случае выполняется V-образной пролетом 6 м (рис. 5.2.11).

Рис.5.2.5. Схемы расположения вертикальных связей в покрытиях

с применением профилированного настила

(разрезы обозначены на рис. 5.2.1, 5.2.2)

Рис.5.2.8. Схема расположения вертикальных связей в покрытиях с применением железобетонных плит

Связи – это важные элементы стального каркаса, которые необходимы для:

1.обеспечения неизменяемости пространственной системы каркаса и устойчивость его сжатых элементов.

2.восприятия и передачи на фундаменты некоторых нагрузок (ветровых, горизонтальных от кранов).

3.обеспечения совместной работы поперечных рам при местных нагрузках (например, крановых).

4.создания жесткости каркаса, необходимой для обеспечения нормальных условий эксплуатации.

Связи подразделяют на связи между колоннами и связи между фермами (связи шатра).

Система связей между колоннами обеспечивает о время эксплуатации и монтажа геометрическую неизменяемость каркаса и его несущую способность в продольном направлении, а также устойчивость колонн из плоскости поперечных рам.

Для выполнения этих функций необходим хотя бы один вертикальный жесткий диск по длине температурного блока и система продольных элементов, прикрепляющих колонны, не входящие в жесткий диск, к последнему. В жесткие диски включены две колонны, подкрановая балка, горизонтальные распорки и решетка, обеспечивающая при шарнирном соединении всех элементов диска геометрическую неизменяемость. Решетка чаще всего проектируется крестовой, элементы которой работают на растяжение при любом направлении сил, передаваемых на диск, и треугольной, элементы которой работают на растяжение и сжатие. Схема решетки выбирается так, чтобы её элементы было удобно крепить к колоннам (углы между вертикалью и элементов решетки близки к 45°). При больших шагах колонн в нижней части колонны целесообразно устройство диска в виде двухшарнирной решетчатой рамы, а в верхней – использования подстропильной фермы. Распорки и решетка при малых высотах сечения колонн располагаются в одной плоскости, а при больших высотах – в двух плоскостях. На связевые диски передаются крутящие моменты, и поэтому при расположении вертикальных связей в двух плоскостях они соединяются горизонтальными решетчатыми связями.

При размещении жестких дисков вдоль здания нужно учитывать возможность перемещения колонн при температурных деформациях продольных элементов (рис.11.6, а). Если поставить диски по торцам здания (рис 11.6, б), то во всех продольных элементах (подкрановые конструкции, подстропильные фермы, распорки связей) возникают чрезмерные температурные усилия .

Поэтому при небольшой длине здания (температурного блока) ставится вертикальная связь в одной панели (рис 11.7, а). При большой длине здания (или блока) для колонн в торцах возрастают неупругие перемещения за счет податливости креплений продольных элементов к колоннам. Расстояние от торца до диска ограничивается с целью закрепления колонн, расположенных близко к торцу, от потери устойчивости. В этих условиях вертикальные связи ставят в двух панелях (рис 11.7, б), причем расстояние между осями должны быть такими, чтобы усилие не были очень велики.

По торцам здания крайние колонны иногда соединяются между собой гибкими верхними связями (рис 11.7, а). Верхние торцевые связи также делают в виде крестов (рис 11.7, б).

Верхние вертикальные связи следует размещать не только в торцевых панелях здания, но и в панелях, примыкающих к температурным швам, так как это повышает продольную жесткость верхней части каркаса; кроме того, в процессе возведения цеха каждый температурный блок может в течение некоторого времени представлять собой самостоятельный конструктивный комплекс.

Вертикальные связи между колоннами ставят по всем рядам колонн здания; располагать их следует между одними и теми же осями.

Связи, устанавливаемые в пределах высоты ригелей в связевом блоке и торцевых шагах, проектируют в виде самостоятельных ферм, в остальных местах ставят распорки.

Продольные элементы связей в точках крепления к колоннам обеспечивают несмещаемость этих точек из плоскости поперечной рамы (рис 11.8, а). Эти точки в расчетной схеме колонны (рис 11.8, б) могут приняты шарнирными опорами. При большой высоте нижней части колонны бывает целесообразна установка дополнительной распорки (рис 11.8, в, которая закрепляет нижнюю часть колонны посередине ее высоты и сокращает расчетную длину колонны (рис 11.8, г).

При большой длине элементов связи, воспринимающие небольшие усилия, рассчитываются по предельной гибкости.

Связи по покрытию.

Связи между фермами, создавая общую пространственную жесткость каркаса обеспечивают: устойчивость сжатых элементов ригеля из плоскости ферм; перераспределение местных нагрузок, приложенных к одной из рам; удобство монтажа: заданную геометрию каркаса; восприятие и передачу на колонны некоторых нагрузок.

Система связей покрытия состоит из горизонтальных и вертикальных связей. Горизонтальные связи располагаются в плоскостях нижнего, верхнего поясов ферм и верхнего пояса фонаря. Горизонтальные связи состоят из поперечных и продольных (рис.11.10, 11.11)

Элементы верхнего пояса стропильных ферм сжаты, поэтому необходимо обеспечить их устойчивость из плоскости ферм.

Для закрепления плит и прогонов от продольных смещений устраиваются поперечные связи по верхним поясам ферм, которые целесообразно располагать в торцах цеха с тем, чтобы они обеспечивали пространственную жесткость покрытия. При большой длине здания или температурного блока (более 144м) устанавливаются дополнительные поперечные связевые фермы. Это уменьшает поперечные перемещения поясов ферм, возникающие вследствие податливости связей.

Особое внимание обращают на завязку узлов ферм в пределах фонаря, где нет кровельного настила. Здесь для раскрепления узлов верхнего пояса ферм из их плоскости предусматриваются распорки, причем такие распорки в коньковом узле фермы обязательны. Распорки прикрепляются к торцовым связям в плоскости верхних поясов ферм.

В зданиях с мостовыми кранами необходимо обеспечить горизонтальную жесткость каркаса как поперек, так и вдоль здания. При работе мостовых кранов возникают усилия, вызывающие поперечные и продольные деформации каркаса цеха. Поэтому в однопролетных зданиях большой высоты (), в зданиях с мостовыми кранами и весьма тяжелого режима работы при любой грузоподъемности обязательна система связей по нижним поясам ферм.

Для сокращения свободной длины растянутой части нижнего пояса приходится в некоторых случаях предусматривать растяжки, закрепляющие нижний пояс в боковом направлении.. Эти растяжки воспринимают условную поперечную силу Q.

В длинных зданиях, состоящих из нескольких температурных блоков, поперечные связевые фермы по верхним и нижним поясам ставят у каждого температурного шва, имея ввиду что каждый температурный блок представляет собой законченный пространственный каркас. Стропильные фермы обладают незначительной боковой жесткостью, поэтому необходимо устраивать вертикальные связи между фермами, располагающиеся в плоскости вертикальных стоек стропильных ферм(рис 11.10, в).

При опирании опорного нижнего узла стропильных на оголовок колонны сверху вертикальные связи необходимо располагать также по опорным стойкам ферм.

В многопролетных цехах связи по верхним поясам ферм и вертикальные ставятся во всех пролетах, а горизонтальные по нижним поясам – по контуру здания и некоторым средним рядам колонн через 60-90м по ширине здания(рис 11.13). В зданиях имеющих перепады по высоте, продольные связевые фермы ставят и вдоль этих перепадов.

Конструктивная схема связей зависит главным образом от шага стропильных ферм. Для горизонтальных связей пи шаге ферм 6м обычно применяют крестовую решетку, раскосы которой работают только на растяжение(рис 11.14, а), а также могут применяться фермы с треугольной решеткой(рис 11.14, б) – здесь раскосы работаю как на сжатие, так и на растяжение. При шаге 12м диагональные элементы связей, даже работающие только на растяжение, получаются слишком тяжелыми, поэтому систему связей проектируют так, чтобы наиболее длинный элемент был не более 12м, и эти элементы поддерживают диагонали.

Связи между колоннами.

Система связей между колоннами обеспечивает во время эксплуатации и монтажа геометрическую неизменяемость каркаса и его несущую способность в продольном направлении, а также устойчивость колонн из плоскости поперечных рам. Для выполнения этих функций необходимы хотя бы один вертикальный жесткий диск по длине температурного блока и система продольных элементов, прикрепляющих колонны, не входящие в жесткий диск, к последнему. В жесткие диски включены две колонны, подкрановая балка, горизонтальные распорки и решетка, обеспечивающая при шарнирном соединении всех элементов диска геометрическую неизменяемость. Решетка часто проектируется крестовой (элементы ее работают на растяжение при любом направлении сил) и треугольной (элементы работают на растяжение, сжатие). При больших шагах колонн в нижней части колонны целесообразно устройство диска в виде двухшарнирной решетчатой рамы, а в верхней – подстропильной фермы. Распорки и решетки при малых высотах сечения колонн располагаются в одной плоскости, а при больших высотах – в двух плоскостях. На связевые диски передаются крутящие моменты, и поэтому при расположении вертикальных связей в двух плоскостях они соединяются горизонтальными решетчатыми связями. При размещении жестких дисков (связевых блоков) вдоль здания нужно учитывать возможность перемещения колонн при температурных деформациях продольных эл-ов. Если поставить диски по торцам здания, о во всех продольных эл-х (подкрановые констр., подстропильные ферм распорки связей) возникают значительные температурные усилия. Поэтому при небольшой длине здания ставится вертикальная связь в одной панели. При большой длине здания для колонн в торцах возрастают неупругие перемещения за счет податливости креплений продольных эл-ов к колоннам. Расстояние от торца до диска ограничивается с целью закрепления колонн, расположенных близко к торцу, от потери устойчивости. В этих случаях связи ставятся в двух панелях, причем расстояние между их осями должно быть таким, чтобы усилия не были очень велики. Предельные расстояния м/у дисками ставятся от возможных перепадов t и установлены нормами. По торцам здания крайние колонны иногда соединяют м/у собой гибкими верхними связями. Делают их в виде крестов, что целесообразно с точки зрения монтажных условий и однотипности решений. Верхние вертикальные связи следует размещать не только в торцевых панелях здания, но и в панелях, примыкающих к температурным швам, т.к. это повышает продольную жесткость верхней части каркаса. Вертикальные связи устанавливают по всем рядам колонн здания, располагают м/у одними и теми же осями. При проектировании связей по средним рядам колон в подкрановой части следует иметь в виду, что иногда нужно иметь свободное пространство между колонными, тогда конструируют портальные связи. В горячих цехах с неразрезными подкрановыми балками или тяжелыми подкраново-подстропильными фермами целесообразно предусматривать специальные конструктивные мероприятия: уменьшение длины температурных блоков. Связи, кроме условных поперечных сил, воспринимают ветровую нагрузку, направленную на торец здания и от продольных воздействий мостовых кранов. Ветровая нагрузка на торец здания воспринимается стойками торцевого фахверка и частично передается на связи по нижнему поясу ферм. Связи шатра передают эту силу в ряды колонн.

Вертикальные связи, как наиболее экономичные конструкции, в большинстве случаев надежно обеспечивают жесткость зданий со стальным каркасом.

1.1. Со статической точки зрения они являются защемленными в земле изгибаемыми консольными балками.

1.2. В узких вертикальных связях возникают значительные усилия, а сами стержни претерпевают большие деформации по длине, что способствует большим деформациям фасада при малом шаге колонн.

1.4. Жесткость узких ветровых связей может быть повышена объединением их с наружными колоннами.

1.5. Такое же действие оказывает высокая горизонтальная балка (например, в техническом этаже высотного здания). Она уменьшает перекос верхнего ригеля фахверка и отклонение здания от вертикали.

Расположение вертинальных связей в плане

В плане вертикальные связи необходимы в двух направлениях. Сплошные или решетчатые вертикальные связи внутри здания препятствуют свободному использованию помещений; их располагают внутри стен или перегородок с небольшим числом проемов.

2.1. Вертикальные связи окружают лестничную клетку.

2.2. Здание с тремя поперечными связями и одной продольной связью. При узком ядре жесткости в высоких зданиях обеспечение жесткости целесообразно по схемам 1 .4 или 1.5.

2.3. Поперечные связи в безоконных торцовых стенах экономны и эффективны; продольная связь в одном пролете между двумя внутренними колоннами.

2.4. Вертикальные связи расположены в наружных стенах. Таким образом, вид здания находится в прямой зависимости от конструкций.

2.5. Высотное здание с квадратным планом и вертикальными связями между четырьмя внутренними колоннами. Необходимая жесткость в обоих направлениях обеспечивается применением схем 1.4 или 1.5.

2.6. В высотных домах с квадратным или близким к квадратному планом расположение связей в наружных стенах позволяет получить особенно рентабельные строительные конструкции.

Расположение связей в каркасе

3.1. Все связи расположены друг над другом.

3.2. Вертикальные связи отдельных этажей не лежат друг над другом, а взаимно смещены. Междуэтажные перекрытия передают горизонтальные усилия от одной вертикальной связи к другой. Жесткость каждого этажа должна быть обеспечена в соответствии с расчетом.

3.3. Решетчатые связи вдоль наружных стен, участвующие в передаче вертикальных и горизонтальных нагрузок.

Влияние вертикальных связей на основание

Колонны здания, как правило, являются одновременно элементами вертикальных связей. Они испытывают усилия от ветра и от нагрузки на перекрытия. Ветровая нагрузка вызывает в колоннах усилия растяжения или сжатия. Усилия в колоннах от вертикальных нагрузок всегда сжимающие. Для устойчивости здания нужно, чтобы в подошве всех фундаментов преобладали усилия сжатия, однако в некоторых случаях усилия растяжения в колоннах могут быть больше, чем усилия сжатия. В этом случае вес фундаментов учитывается как балласт.

4.1. Угловые колонны воспринимают незначительные вертикальные нагрузки, однако при большом шаге связей усилия, возникающие в этих колоннах от ветра, также незначительны, а потому искусственной пригрузки угловых фундаментов обычно не требуется.

4.2. Внутренние колонны воспринимают большие вертикальные нагрузки, а из-за незначительной ширины ветровых связей и большие усилия от ветра.

4.3. Ветровые усилия такие же, как на схеме 4.2, но уравновешиваются небольшими вертикальными нагрузками благодаря наружным колоннам. Пригрузка фундаментов в этом случае необходима.

4.4. Пригрузка фундаментов необязательна, если наружные колонны стоят на высокой подвальной стене, которая в состоянии уравновесить силы растяжения от действия ветра.

5. Жесткость зданий в поперечном направлении обеспечивается с помощью решетчатых связей в безоконных торцовых стенах. Связи скрыты между наружной стеной и внутренней огнестойкой облицовкой. В продольном направлении здание имеет вертикальные связи в коридорной стене, но расположены они не друг над другом, а смещаются в разных этажах. - Ветеринарно-медицинский факультет в Западном Берлине. Архитекторы: д-р Люкхардт и Вандельт.

6. Жесткость каркаса обеспечивается в поперечном направлении решетчатыми дисками, которые проходят через оба корпуса здания, выходя наружу в промежутках между зданиями. Жесткость здания в продольном направлении обеспечена связями между внутренними рядами колонн. - Высотный дом «Феникс-Рейнрор» в Дюссельдорфе. Архитекторы: Хентрих и Петчниг.

7. Трехпролетное здание с шагом колонн в поперечном направлении 7; 3,5; 7 м. Между четырьмя расположенными попарно внутренними колоннами узкие поперечные связи, между двумя внутренними колоннами одного ряда - продольная связь. Вследствие незначительной ширины поперечных связей расчетные горизонтальные деформации от действия ветра очень велики. Поэтому во втором и пятом этажах в четырех связевых плоскостях установлены напрягаемые раскосы к наружным колоннам.

Напрягаемые стержни выполнены в виде поставленных на ребро стальных полос. Они предварительно напрягаются (напряжение контролируется тензометрами) настолько, что при действии ветра напряжение растянутого раскоса одного направления удваивается, а в другом направлении обращается почти в нуль. - Здание главной администрации фирмы «Беваг» в Западном Берлине. Архитектор проф. Баумгартен.

8. Здание имеет только наружные колонны. Балки перекрывают пролет 12,5 м, шаг наружных колонн 7,5 м. В высокой части ветровые связи расположены на всю ширину здания между наружными колоннами. Наружные колонны воспринимают большие нагрузки, что компенсирует растягивающие усилия от ветра. Фронтон высокой части здания выдается перед колоннами на 2,5 м. Расположенные в торцовых стенах связи продолжаются в пределах первого скрытого этажа между колоннами с передачей горизонтальных усилий от верхней связи к нижней по горизонтальной связи в нижнем междуэтажном перекрытии. Для передачи суммарных опорных усилий служит сплошная балка из стальных листов на высоту этажа, расположенная в техническом этаже между предпоследней и последней колоннами. Эта балка образует консоль до фронтонной стены. - Высотное здание телецентра в Западном Берлине. Архитектор Тепец. Конструктор дипл. инж. Трептов.

9. Обеспечение жесткости здания с помощью наружных связей, передающих часть вертикальных нагрузок промежуточным колоннам. Детали - Административное здание фирмы «Алкоа» в Сан-Франциско. Архитекторы: Скидмор, Оуингс, Меррил.

10. Обеспечение жесткости здания в поперечном направлении: в нижней части благодаря тяжелой железобетонной стене, в верхней части с помощью расположенных перед фасадом связей, которые смещаются в шахматном порядке. В каждом этаже по шесть связей. Стержни связей изготовлены из трубчатых профилей. Жесткость в продольном направлении обеспечена установкой фахверковых связей в средних рядах колонн. Детали - Жилой высотный дом на улице Крулебарб в Париже. Архитекторы: Альбер-Буало и Лябурдет.