Формирование теории упругости как целостной науки. Основы теории упругости. Типы задач теории упругости

В телах, находящихся в покое или движутся под действием нагрузок.


1. Задача теории упругости

Задачей этой теории есть запись математических уравнений, решение которых позволяет ответить на следующие вопросы:

  • какими будут деформации конкретного тела, если к нему приложить в известных местах погрузки заданной величины?
  • какими будут при этом напряжение в теле?

Вопрос, тело разрушится, выдержит эти нагрузки, тесно связанные с теорией упругости, но, строго говоря, не входит в его компетенцию.

Примеров можно привести множество - от определения деформаций и напряжений в нагруженной балке на опорах, в расчет этих же параметров в корпусе самолета, ракеты, подлодки, в колесе вагона в броне танка при ударе снаряда, в горном массиве при прокладке штольни, в каркасе высотного здания и так далее.

Для случая инженерных задач, напряжения и деформации в конструкциях рассчитывают по упрощенным теориям, логически базируются на теории упругости. К таким теориям относятся: сопротивление материалов , задачей которого является расчет стержней и балок , а также оценка напряжений, возникающих в зонах контактного взаимодействия твердых тел; строительная механика - расчет стержневых систем (например, мостов), и теория оболочек - самостоятельная и хорошо развитая отрасль науки о деформации и напряжения, предметом исследования которой является тонкостенные оболочки - цилиндрические, конические, сферические, и сложные формы.


2. Основные понятия теории упругости

Основными понятиями теории упругости является напряжение, действующих на малых площинках, которые можно мысленно провести в теле через заданную точку P, деформации малой окрестности точки P и перемещения самой точки P. Точнее говоря, вводятся тензор механических напряжений , Тензор малых деформаций и вектор перемещения u i. Краткое обозначение , Где индексы i, j принимают значения 1, 2, 3 (или x, y, z) следует понимать как матрицу в видах:

Аналогично следует понимать и краткое обозначение тензора .

Если физическое точка тела M вследствие деформации заняла новое положение в пространстве P ", то вектор перемещения является вектор с компонентами (u x, u y, u z), или, сокращенно, u i. В теории малых деформаций компоненты u i и считаются малыми величинами (строго говоря, бесконечно малыми). Компоненты тензора , Который также называется тензор деформации Коши или линейный тензор деформации и вектора u i связаны зависимостями:

С последней записи видно, что , Поэтому тензор деформации является симметричным по определению.

Если упругое тело под действием внешних сил находится в равновесии (т.е. скорости всех его точек равны нулю), то в равновесии находится и любая часть тела, которую мысленно можно из него выделить. Из тела выделяется бесконечно малый прямоугольный параллелепипед, грани которого параллельны координатным плоскостям декартовой системы. Из условия равновесия параллелепипеда с размерами ребер dx, dy, dz, рассмотрев условия равновесия сил в проекциях, можно получить:

Аналогично получаются уравнения равновесия, выражающих равенство нулю главного момента всех сил, действующих на параллелепипед, приводимые к виду:

Это равенство означает, что тензор напряжений является симметричным тензор и число неизвестных компонент тензора напряжений сводится к 6. Есть только три уравнения равновесия, т.е. уравнений статики недостаточно для решения задачи. Выход из положения состоит в том, чтобы выразить напряжения через деформации с помощью уравнений закона Гука , а затем деформации выразить через перемещения u i с помощью формул Коши, и результат подставить в уравнение равновесия. При этом получается три дифференциальные уравнения равновесия относительно трех неизвестных функций u x u y u z, т.е. число неизвестных будет соответствовать числу уравнений. Эти уравнения называются уравнениями Навье-Коши.

.

3. Граничные условия

Решение задач теории упругости сводится к интегрированию системы дифференциальных уравнений в частных производных, определяющие поведение упругого тела во внутренних точках. К этим уравнениям добавляются условия на поверхности, ограничивающей тело. Эти условия определяют задания или внешних поверхностных сил, или перемещений точек поверхности тела. В зависимости от этого обычно формулируют один из трех типов краевых задач.

Первая краевая задача - кинематическая. В объеме тела отыскиваются составляющие перемещений, приобретают на поверхности определенных значений. В условии на поверхности тела таким образом задаются уравнения поверхности и значения составляющих перемещений на ней.

Вторая краевая задача - статическая. В этом случае на поверхности тела не наложены никакие ограничения на перемещение и задаются уравнения поверхности, направляющие косинусы нормали к поверхности и значения составляющих поверхностных нагрузок.

В случае, когда поверхность тела совпадает с координатными плоскостями, граничные условия могут быть сформулированы непосредственно в напряжениях. Тогда достаточно указать уравнение поверхности и задать значения составляющих напряжений на ней.

Третья краевая задача - смешанная. В этом случае на одной части поверхности тела задаются кинематические условия, а на другой - статические.

Этими тремя задачами не исчерпывается все разнообразие граничных условий. Например, на некотором участке поверхности могут быть заданы не все три составляющие перемещения или составляющие поверхностной нагрузки.


4. Смотри также

Источники

  • Тимошенко С. П., Гудьер Дж. Теория упругости. М.: Наука, 1979. 560 с.

ОСНОВЫ ТЕОРИИ УПРУГОСТИ

ОСЕСИММЕТРИЧНЫЕ ЗАДАЧИ ТЕОРИИ УПРУГОСТИ

ОСНОВЫ ТЕОРИИ УПРУГОСТИ

Основные положения, допущения и обозначения Уравнения равновесия элементарного параллелепипеда и элементарного тетраэдра. Нормальные и касательные напряжения по наклонной площадке

Определение главных напряжений и наибольших касательных напряжений в точке. Напряжения по октаэдрическим площадкам Понятие о перемещениях. Зависимости между деформациями и перемещениями. Относительная

линейная деформация в произвольном направлении Уравнения совместности деформаций. Закон Гука для изотропного тела Плоская задача в прямоугольных координатах Плоская задача в полярных координатах

Возможные решения задач теории упругости. Решения задач в перемещениях и напряжениях Наличие температурного поля. Краткие выводы по разделу ПРОСТЕЙШИЕ ОСЕСИММЕТРИЧНЫЕ ЗАДАЧИ Уравнения в цилиндрических координатах Уравнения в цилиндрических координатах (продолжение)

Деформация толстостенного сферического сосуда Сосредоточенная сила, действующая на плоскость

Частные случаи загрузки упругого полупространства: равномерная загрузка по площади круга, загрузка на площади круга по "полушару", обратная задача Вдавливание абсолютно жесткого шара в упругое полупространство. Задача об упругом смятии шаров ТОЛСТОСТЕННЫЕ ТРУБЫ

Общие сведения. Уравнение равновесия элемента трубы Исследование напряжений при давлении на одном из контуров. Условия прочности при упругой деформации Напряжения в составных трубах. Понятие о расчете многослойных труб Примеры расчетов

ПЛАСТИНЫ, МЕМБРАНЫ Основные определения и гипотезы

Дифференциальное уравнение изогнутой срединной поверхности пластины в прямоугольных координатах Цилиндрический и сферический изгиб пластины

Изгибающие моменты при осесимметричном изгибе круглой пластины. Дифференциальное уравнение изогнутой срединной поверхности круглой пластины Граничные условия в круглых пластинах. Наибольшие напряжения и прогибы. Условия прочности. Температурные напряжения в пластинах

Определение усилий в мембранах. Цепные усилия и напряжения. Приближенное определение прогибов и напряжений в круглых мембранах Примеры расчетов Примеры расчетов (продолжение)

1.1 Основные положения, допущения и обозначения

Теория упругости имеет целью аналитическое изучение напряженнодеформированного состояния упругого тела. С помощью теории упругости могут быть проверены решения, полученные с использованием допущений сопротивления

материалов, и установлены границы применимости этих решений. Иногда разделы теории упругости, в которых, как и в сопротивлении материалов, рассматривается вопрос о пригодности детали, но с использованием достаточно сложного математического аппарата (расчет пластин, оболочек, массивов), относят к прикладной теории упругости.

В настоящей главе изложены основные понятия математической линейной теории упругости. Применение математики к описанию физических явлений требует их схематизации. В математической теории упругости задачи решаются с возможно меньшим числом допущений, что усложняет математические приемы, применяемые для решения. В линейной теории упругости предполагается существование линейной зависимости между составляющими напряжениями и деформациями. Для ряда материалов (резина, некоторые сорта чугуна) такая зависимость даже при малых деформациях не может быть принята: диаграмма σ - ε в пределах упругости имеет одинаковые очертания как при нагружении, так и при разгрузке, но в обоих случаях криволинейна. При исследовании таких материалов необходимо пользоваться зависимостями нелинейной теории упругости.

В математической линейной теории упругости исходят из следующих допущений:

1. О непрерывности (сплошности) среды. При этом атомистическая структура вещества или наличие каких-либо пустот не учитывается.

2. О естественном состоянии, на основании которого начальное напряженное (деформированное) состояние тела, возникшее до приложения силовых воздействий, не учитывается, т. е. предполагается, что в момент нагружения тела деформации и напряжения в любой его точке равны нулю. При наличии начальных напряжений это допущение будет справедливым, если только к результирующим напряжениям (сумме начальных и возникших от из воздействий) могут быть применены зависимости линейной теории упругости.

3. Об однородности, на основании которого предполагается, что состав тела одинаков во всех точках. Если применительно к металлам это допущение не дает больших погрешностей, то в отношении бетона при рассмотрении малых объемов оно может привести к значительным погрешностям.

4. О шаровой изотропности, на основании которого считается, что механи-ческие свойства материала одинаковы по всем направлениям. Кристаллы металла не обладают таким свойством, но для металла в целом, состоящего из большого числа мелких кристаллов, можно считать, что эта гипотеза справедлива. Для материалов, обладающих различными механическими свойствами в разных направлениях, как, например, для слоистых пластиков, разработана теория упругости ортотропных и анизотропных материалов.

5. Об идеальной упругости, на основании которого предполагается полное исчезновение деформации после снятия нагрузки. Как известно, в реальных телах при любом нагружении возникает остаточная деформация. Поэтому допущение

6. О линейной зависимости между составляющими деформациями и напря-жениями.

7. О малости деформаций, на основании которого предполагается, что относительные линейные и угловые деформации малы по сравнению с единицей. Для таких материалов, как резина, или таких элементов, как спиральные пружины, создана теория больших упругих деформаций.

При решении задач теории упругости пользуются теоремой о единственности решения: если заданные внешние поверхностные и объемные силы находятся в равновесии, им соответствует одна единственная система напряжений и перемещений. Положение о единственности решения справедливо, если только справедливы допущение о естественном состоянии тела (иначе возможно бесчисленное количество решений) и допущение о линейной зависимости между деформациями и внешними силами.

При решении задач теории упругости часто пользуются принципом Сен-Венана: если внешние силы, приложенные на небольшом участке упругого тела, заменить действующей на том же участке статически эквивалентной системой сил (имеющей тот же главный вектор и тот же главный момент), то эта замена вызовет лишь изменение местных деформаций.

В точках, достаточно удаленных от мест приложения внешних нагрузок, напряжения мало зависят от способа их приложения. Нагрузка, которая в курсе сопротивления материалов схематически выражалась на основании принципа Сен-Венана в виде силы или сосредоточенного момента, на самом деле представляет собой нормальные и касательные напряжения, распределенные тем или иным способом на определенном участке поверхности тела. При этом одной и той же силе или паре сил может соответствовать различное распределение напряжений. На основании принципа Сен-Венана можно считать, что изменение усилий на участке поверхности тела почти не отражается на напряжениях в точках, удаленных на достаточно большое расстояние от места приложения этих усилий (по сравнению с линейными размерами нагруженного участка).

Положение исследуемой площадки, выделенной в теле (рис. 1), определяется направляющими косинусами нормали N к площадке в выбранной системе прямоугольных осей координат х, у и z.

Если Р - равнодействующая внутренних сил, действующих по элементарной площадке , выделенной у точки А, то полное напряжение р N в этой точке по площадке с нормалью N определяется как предел отношения в

следующей форме:

.

Вектор р N можно разложить в пространстве на три взаимно перпенди-кулярные составляющие.

2. На составляющие σ N , τ N s и τ N t по направлениям нормали к площадке (нормальное напряжение) и двух взаимно перпендикулярных осей s и t (рис. 1,б), лежащих в плоскости площадки (касательные напряжения). Согласно рис.1, б

Если сечение тела или площадка параллельны одной из плоскостей координат, например у0z (рис. 2), то нормалью к этой площадке будет третья ось координат х и составляющие напряжения будут иметь обозначения σ x , τ xy и τ xz .

Нормальное напряжение положительно, если оно растягивающее, и отрицательно, если оно сжимающее. Знак касательного напряжения определяется с помощью следующего правила: если положительное (растягивающее) нормальное напряжение по площадке дает положительную проекцию, то касательное

напряжение по той же площадке считается положительным при условии, что оно тоже дает положительную проекцию на соответствующую ось; если же растягивающее нормальное напряжение дает отрицательную проекцию, то положительное касательное напряжение тоже должно давать отрицательную проекцию на соответствующую ось.

На рис. 3, например, все составляющие напряжения, действующие по граням элементарного параллелепипеда, совпадающим с плоскостями координат, положительны.

Чтобы определить напряженное состояние в точке упругого тела, необходимо знать полные напряжения р N по трем взаимно перпендикулярным площадкам, проходящим через эту точку. Так как каждое полное напряжение можно разложить на три составляющие, напряженное состояние будет определено, если будут известны девять составляющих напряжений. Эти составляющие можно записать в виде матрицы

,

называемой матрицей компонентов тензора напряжений в точке.

В каждой горизонтальной строчке матрицы записаны три составляющих напряжения, действующих по одной площадке, так как первые значки (название нормали) у них одинаковые. В каждом вертикальном столбце тензора записаны три напряжения, параллельных одной и той же оси, так как вторые значки (название оси, параллельно которой действует напряжение) у них одинаковые.

1.2 Уравнения равновесия элементарного параллелепипеда

и элементарного тетраэдра

Выделим у исследуемой точки А (с координатами х, у и z) напряженного упругого тела тремя взаимно перпендикулярными парами плоскостей элементарный параллелепипед с размерами ребер dx, dy и dz (рис. 2). По каждой из трех взаимно перпендикулярных граней, примыкающих к точке А (ближайших к плоскостям координат), будут действовать три составляющих напряжения − нормальное и два касательных. Считаем, что по граням, примыкающим к точке А, они положительны.

При переходе от грани, проходящей через точку А, к параллельной грани напряжения меняются и получают приращения. Например, если по грани CAD, проходящей через точку А, действуют составляющие напряжения σ х = f 1 (x,y,z), τ xy =f 2 (x,y,z,), τ xz =f 3 (x,y,z,) , то по параллельной грани, вследствие приращения только одной координаты х при переходе от одной грани к другой, будут действовать

составляющие напряжения Можно определить напряжения на всех гранях элементарного параллелепипеда, как показано на рис. 3.

Кроме напряжений, приложенных к граням элементарного параллелепипеда, на него действуют объемные силы: силы веса, инерционные. Обозначим проекции этих сил, отнесенных к единице объема, на оси координат через X, У и Z. Если приравнять нулю сумму проекций на ось х всех нормальных, касательных и объемной сил,

действующих на элементарный параллелепипед, то после сокращения на произведение dxdydz получим уравнение

.

Составив аналогичные уравнения проекций сил на оси у и z , напишем три дифференциальных уравнения равновесия элементарного параллелепипеда, полученных Коши,

При уменьшении размеров параллелепипеда до нуля он превращается в точку, а σ и τ представляют собой составляющие напряжения по трем взаимно перпендикулярным площадкам, проходящим через точку А .

Если приравнять нулю сумму моментов всех сил, действующих на элементарный параллелепипед, относительно оси x c , параллельной оси х и проходящей через его центр тяжести, получим уравнение

или, с учетом того, что второй и четвертый члены уравнения высшего порядка малости по сравнению с остальными, после сокращения на dxdydz

τ yz - τ zy = 0 или τ yz = τ zy.

Составив аналогичные уравнения моментов относительно центральных осей у c и z c , получим три уравнения закона парности касательных напряжений

τ xy = τ yx, τ yx = τ xy , τ zx = τ xz . (1.3)

Этот закон формулируется так: касательные напряжения, действующие по взаимно перпендикулярным площадкам и направленные перпендикулярно к линии пересечения площадок, равны по величине и одинаковы по знаку.

Таким образом, из девяти составляющих напряжений матрицы тензора Т σ шесть попарно равны друг другу, и для определения напряженного состояния в точке достаточно найти лишь следующие шесть составляющих напряжений:

.

Но составленные условия равновесия дали нам всего лишь три уравнения (1.2), из которых шесть неизвестных найдены быть не могут. Таким образом, прямая задача определения напряженного состояния в точке в общем случае статически неопределима. Для раскрытия этой статической неопределимости необходимы дополнительные геометрические и физические зависимости.

Рассечем элементарный параллелепипед у точки А плоскостью, наклоненной к его граням; пусть нормаль N к этой плоскости имеет направляющие косинусы l, т и п. Получившаяся геометрическая фигура (рис. 4) представляет собой пирамиду с треугольным основанием − элементар-ный тетраэдр. Будем считать, что точка А совпадает с началом координат, а три взаимно перпендикулярные грани тетраэдра − с плоскостями координат.

Составляющие напряжения, действующие по этим граням тетраэдра, будем считать

положительными. Они показаны на рис. 4. Обозначим через , и проекции полного напряжения p N , действующего по наклонной грани BCD тетраэдра, на оси х, у и z. Площадь наклонной грани BCD обозначим dF. Тогда площадь грани АВС будет dFп, грани ACD − dFl и грани АDВ − dFт.

Составим уравнение равновесия тетраэдра, спроектировав все силы, действующие по его граням, на ось х; проекция объемной силы в уравнение проекций не входит, так

как представляет собой величину высшего порядка малости по сравнению с проекциями поверхностных сил:

Составив уравнения проекции сил, действующих на тетраэдр, на оси у и z , получим еще два аналогичных уравнения. В результате будем иметь три уравнения равновесия элементарного тетраэдра

Разделим пространственное тело произвольной формы системой взаимно перпендикулярных плоскостей хОу, yОz и хОz (рис. 5) на ряд элементарных параллелепипедов. У поверхности тела при этом образуются элементарные

тетраэдры, (криволинейные участки поверхности ввиду их малости можно заменить плоскостями). В таком случае р N будет представлять нагрузку на поверхности, а уравнения (1.4) будут связывать эту нагрузку с напряжениями σ и τ в теле, т. е. будут представлять граничные условия задачи теории упругости. Условия, определяемые этими уравнениями, называют условиями на поверхности.

Следует отметить, что в теории упругости внешние нагрузки представляются нормальными и касательными напряжениями, приложенными по какому-либо закону к площадкам, совпадающим с поверхностью тела.

1.3 Нормальные и касательные напряжения по наклонной

площадке

Рассмотрим элементарный тетраэдр ABCD, три грани которого параллельны координатным плоскостям, а нормаль N к четвертой грани составляет с координатными осями углы, косинусы которых равны l, т и п (рис. 6). Будем считать заданными составляющие нормальные и касательные напряжения, действующие по площадкам, лежащим в координатных плоскостях, и определим напряжения на площадке BCD. Выберем новую систему прямоугольных осей координат х 1 , y 1 и z 1 , так чтобы ось х 1 совпадала с нормалью N ,

- – раздел механики, изучающий вызванные физическими воздействиями упругие деформации и напряжения в твердом теле. [Терминологический словарь по строительству на 12 языках] Рубрика термина: Общие термины Рубрики энциклопедии: Абразивное… … Энциклопедия терминов, определений и пояснений строительных материалов

теория упругости - Наука о закономерностях изменения напряжённого и деформированного состояний нагруженного твёрдого тела в пределах упругой работы материала [Терминологический словарь по строительству на 12 языках (ВНИИИС Госстроя СССР)] EN elasticity theory DE… … Справочник технического переводчика

теория упругости - tamprumo teorija statusas T sritis fizika atitikmenys: angl. elasticity theory vok. Elastizitätstheorie, f rus. теория упругости, f pranc. théorie d’élasticité, f … Fizikos terminų žodynas

ТЕОРИЯ УПРУГОСТИ - наука о закономерностях изменения напряжённого и деформированного состояний нагруженного твёрдого тела в пределах упругой работы материала (Болгарский язык; Български) теория на еластичността (Чешский язык; Čeština) teorie pružnosti (Немецкий… … Строительный словарь

Теория упругости и пластичности - состоит из двух подразделов: Теории упругости, Теории пластичности. Список значений слова или словосочетан … Википедия

УПРУГОСТИ ТЕОРИЯ - раздел механики, в к ром изучаются перемещения, деформации и напряжения, возникающие в покоящихся или движущихся упругих телах под действием нагрузки. У. т. основа расчётов на прочность, деформируемость и устойчивость в строит, деле, авиа и… … Физическая энциклопедия

УПРУГОСТИ МАТЕМАТИЧЕСКАЯ ТЕОРИЯ - раздел механики, в к ром изучаются перемещения, деформации и напряжения, возникающие в покоящихся или движущихся упругих телах под действием нагрузки. Напряжение в любой точке тела характеризуется 6 величинами компонентами напряжений: нормальными … Математическая энциклопедия

Упругости теория - Механика сплошных сред Сплошная среда Классическая механика Закон сохранения массы · Закон сохранения импульса … Википедия

Упругости теория - раздел механики (См. Механика), в котором изучаются перемещения, деформации и напряжения, возникающие в покоящихся или движущихся упругих телах под действием нагрузки. У. т. теоретическая основа расчётов на прочность, деформируемость и… … Большая советская энциклопедия

Теория пластичности - Теория пластичности раздел механики сплошных сред, задачами которого является определение напряжений и перемещений в деформируемом теле за пределами упругости. Строго говоря, в теории пластичности предполагается, что напряженное состояние… … Википедия

Книги

  • Теория упругости , М. Филоненко-Бородич , Предлагаемый вниманию читателей краткий курс теории упругости составлен на основе лекций, прочитанных автором в Московском государственном университете им. М. В. Ломоносова. Эти лекции имеют… Категория: Математика Издатель: ЁЁ Медиа , Производитель: ЁЁ Медиа , Купить за 2200 грн (только Украина)
  • Теория упругости , М. Филоненко-Бородич , Предлагаемый вниманию читателей «краткий курс теории упругости» составлен на основе лекций, прочитанных автором в Московском государственном университете им. М. В. Ломоносова. Эти лекции… Категория: Математика и естественные науки Серия: Издатель:

В главах 4-6 были выведены основные уравнения теории упругости, устанавливающие законы изменения напряжений и деформаций в окрестности произвольной точки тела, а также соотношения, связывающие напряжения с деформациями и деформации с перемещениями. Приведем полную систему уравнений теории упругости в декартовых координатах.

Уравнения равновесия Навье:

Соотношения Коши:


Закон Гука (в прямой и обратной формах):


Напомним, что здесь е = е х + е у + e z - относительная объемная деформация, а по закону парности касательных напряжений Xj. = Tj; и соответственно у~ = ^ 7 . Входящие в (16.3, а) постоянные Ляме определяются по формулам (6.13).

Из приведенной системы видно, что она включает 15 дифференциальных и алгебраических уравнений, содержащих 15 неизвестных функций (6 компонент тензора напряжений, 6 компонент тензора деформаций и 3 компоненты вектора перемещения).

В силу сложности полной системы уравнений нельзя найти общее решение, которое было бы справедливо для всех задач теории упругости, встречающихся на практике.

Существуют различные способы уменьшения количества уравнений, если в качестве неизвестных функций принять, например, только напряжения или перемещения.

Если, решая задачу теории упругости, исключить из рассмотрения перемещения, то вместо соотношений Коши (16.2) можно получить уравнения, связывающие между собой компоненты тензора деформаций. Продифференцируем деформацию г х, определяемую первым равенством (16.2), два раза по у, деформацию г у - два раза по х и сложим полученные выражения. В результате получим

Выражение, стоящее в скобках, согласно (16.2) определяет угловую деформацию у. Таким образом, последнее равенство можно записать в виде

Аналогично можно получить еще два равенства, которые вместе с последним соотношением составляют первую группу уравнений совместности деформаций Сен-Венана:

Каждое из равенств (16.4) устанавливает связь между деформациями в одной плоскости. Из соотношений Коши могут быть также получены условия совместности, связывающие деформации в разных плоскостях. Продифференцируем выражения (16.2) для угловых деформаций следующим образом: у - по z у - по х;

По у; сложим два первых равенства и вычтем третье. В результате получим


Дифференцируя это равенство по у и учитывая, что,

приходим к следующему соотношению:

С помощью круговой подстановки получим еще два равенства, которые вместе с последним соотношением составляют вторую группу уравнений совместности деформаций Сен-Венана:

Уравнения совместности деформаций называются также условиями сплошности или неразрывности. Эти термины характеризуют тот факт, что при деформировании тело остается сплошным. Если представить тело состоящим из отдельных элементов и принять деформации е х, у в виде произвольных функций, то в деформированном состоянии из этих элементов не удастся сложить сплошное тело. При выполнении условий (16.4), (16.5) перемещения границ отдельных элементов будут таковы, что тело и в деформированном состоянии останется сплошным.

Таким образом, одним из способов сокращения количества неизвестных при решении задач теории упругости является исключение из рассмотрения перемещений. Тогда вместо соотношений Коши в полную систему уравнений будут входить уравнения совместности деформаций Сен-Венана.

Рассматривая полную систему уравнений теории упругости, следует обратить внимание на то, что она практически не содержит факторов, определяющих напряженно-деформированное состояние тела. К таким факторам относятся форма и размеры тела, способы его закрепления, действующие на тело нагрузки, за исключением объемных сил X, Y, Z.

Таким образом, полная система уравнений теории упругости устанавливает лишь общие закономерности изменения напряжений, деформаций и перемещений в упругих телах. Решение же конкретной задачи может быть получено, если заданы условия нагружения тела. Это дается в граничных условиях, которые и отличают одну задачу теории упругости от другой.

С математической точки зрения также понятно, что общее решение системы дифференциальных уравнений включает в себя произвольные функции и постоянные, которые и должны быть определены из граничных условий.

Основная задача теории упругости - определение напряженно-деформированного состояния по заданным условиям нагружения и закрепления тела.

Напряженно-деформированное состояние определено, если найдены компоненты тензора напряжений {} и вектора перемещений, девять функций.

Основные уравнения теории упругости

Для того, чтобы найти эти девять функций надо записать основные уравнения теории упругости, или:

Дифференциальные Коши

где - компоненты тензора линейной части деформаций Коши;

Компоненты тензора производной перемещения по радиусу.

Дифференциальные уравнения равновесия

где - компоненты тензора напряжений; - проекция объемной силы на ось j.

Закон Гука для линейно-упругого изотропного тела

где - константы Ламе; для изотропного тела. Здесь - нормальные и касательные напряжения; деформации и углы сдвига соответственно.

Вышеперечисленные уравнения должны удовлетворять зависимостям Сен-Венана

В теории упругости задача решена, если выполняются все основные уравнения.

Типы задач теории упругости

Граничные условия на поверхности тела должны выполняться и в зависимости от типа граничных условий различают три типа задач теории упругости.

Первый тип. На поверхности тела заданы силы. Граничные условия

Второй тип. Задачи, в которых на поверхности тела задано перемещение. Граничные условия

Третий тип. Смешанные задачи теории упругости. На части поверхности тела заданы силы, на части поверхности тела задано перемещение. Граничные условия

Прямая и обратная задачи теории упругости

Задачи, в которых на поверхности тела заданы силы или перемещения, а требуется найти напряженно-деформированное состояние внутри тела и то, что не задано на поверхности, называют прямыми задачами. Если же внутри тела заданы напряжения, деформации, перемещения и т.д., а требуется определить то, что не задано внутри тела, а также перемещения и напряжения на поверхности тела (то есть найти причины, вызвавшие такое напряженно-деформированное состояние)), то такие задачи называются обратными.

Уравнения теории упругости в перемещениях (уравнения Ламе)

Для определения уравнений теории упругости в перемещениях запишем: дифференциальные уравнения равновесия (18) закон Гука для линейно-упругого изотропного тела (19)

Если учесть, что деформации выражаются через перемещения (17), запишем:

Следует также напомнить, что угол сдвига связан с перемещениями следующим соотношением (17):

Подставив в первое уравнение равенств (19) выражение (22), получим, что нормальные напряжения

Отметим, что запись иц в данном случае не подразумевает суммирования по i.

Подставив во второе уравнение равенств (19) выражение (23), получим, что касательные напряжения

Запишем уравнения равновесия (18) в развернутом виде для j = 1

Подставив в уравнение (26) выражения для нормальных (24) и касательных (25) напряжений, получим

где л- константа Ламе, которая определяется по выражению:

Подставим выражение (28) в уравнение (27) и запишем,

где определяется по выражению (22), или в развернутом виде

Разделим выражение (29) на G и приведем подобные слагаемые и получим первое уравнение Ламе:

где - оператор Лапласа (гармонический оператор), который определятся как

Аналогично можно получить:

Уравнения (30) и (32) можно записать в следующем виде:

Уравнения (33) или (30) и (32) являются уравнениями Ламе. Если объемные силы равны нулю или постоянны, то

причем запись в данном случае не подразумевает суммирования по i. Здесь

или, с учетом (31)

Подставив (22) в (34) и проведя преобразования, получим

а, следовательно

где - функция, удовлетворяющая данному равенству. Если

следовательно, f - функция гармоническая. Значит и объемная деформация также функция гармоническая.

Считая верным предыдущее предположение, возьмем гармонический оператор от i -ой строчки уравнения Ламе

Если объемные силы равны нулю или постоянны, то компоненты перемещения есть бигармонические функции.

Известны различные формы представления бигармонических функций через гармонические (удовлетворяющие уравнениям Ламе).

где k = 1,2,3. Причем

Можно показать, что такое представление перемещений через гармоническую функцию обращает в тождество уравнения Ламе (33). Часто их называют условиями Попковича-Гродского. Четыре гармонические функции не обязательны, ведь ф0 можно приравнять нулю.